

SÍLABO 2025-I

I. DATOS ADMINISTRATIVOS

1. Asignatura o Módulo : Programación en electrónica I

2. Código : IE-03013. Condición : Obligatorio

4. Naturaleza : Teórica, Práctica, Laboratorio

5. Requisitos : Ninguno6. N° Créditos : 04

7. N° de horas : 06 horas / semana

8. Semestre Académico : 03

9. Docente : Mag. Erick Cardozo Gálvez

10. Correo Institucional : erick.cardozo@urp.edu.pe

II. SUMILLA

Asignatura de naturaleza teórica-práctica y experimental que aporta al logro de las siguientes competencias específicas: Solución de problemas de Ingeniería, Trabajo en Equipo, Experimentación y Aprendizaje Permanente.

El estudiante al finalizar la asignatura podrá solucionar problemas y aplicar criterios en situaciones prácticas aplicando conocimientos de programación algorítmica en el software Matlab y la utilización de su interfaz gráfica, así como también en la adquisición y generación de señales reales con la finalidad de aplicarlo en las áreas de Telecomunicaciones y Control Automático.

Los temas que la asignatura aborda son: Introducción al software Matlab. Variables tipo Vectores y Matrices. Gráficos en 2D y 3D. Programación con Matlab y creación de funciones. Introducción y simulación con el SIMULINK. Programación y desarrollo de Interfaz Gráfica con el App Designer del Matlab. Input y output de señales a través de los puertos. Simulación y aplicaciones para las áreas de Telecomunicaciones y Control Automático.

III. COMPETENCIAS COMPETENCIAS GENÉRICAS A LAS QUE CONTRIBUYE LA ASIGNATURA

- Autoaprendizaje
- Comportamiento ético

IV. COMPETENCIAS ESPECÍFICAS A LAS QUE CONTRIBUYE LA ASIGNATURA

Soluciona problemas de Ingeniería.

V. DESARROLLA EL COMPONENTE DE: INVESTIGACIÓN FORMATIVA

VI. LOGRO DE LA ASIGNATURA

Al finalizar la asignatura, el estudiante será capaz de utilizar MATLAB como una herramienta fundamental para la programación, análisis y simulación en ingeniería con soporte en SIMULINK. Comprenderá conceptos bases en circuitos eléctricos, teoría de control y telecomunicaciones y su aplicación en MATLAB; podrá integrar MATLAB con interfaces de hardware como puerto USB y Ethernet, comunicarse con dispositivos como PLCs, y utilizar Simulink para la simulación y adquisición de señales.

Demostrando un manejo integral de las herramientas para aplicaciones prácticas en ingeniería.

VII. PROGRAMACIÓN DE CONTENIDOS

UNIDAD I		INTRODUCCION Y PROGRAMACION BASICA	
Logros de aprendizaje	Al finalizar la unidad el estudiante será capaz de declarar y manipular variables, realizará operaciones matemáticas. Manejara el concepto de vectores, matrices y arreglos. Implementara funciones propias con scripts y live scripts, haciendo uso condicionales y bucles.		
Semanas	Tipo de Clase	Contenidos	
1	Teoría / práctica	Introducción. Variables en Matlab. Categorías y conversión de tipos de variables. Operadores matemáticos, impresión de variables	
2	Teoría / práctica	Funciones propias de Matlab. Funciones matemáticas elementales. Funciones trigonométricas. Funciones de análisis datos. Números aleatorios. Números complejos.	
3	Teoría / práctica	Vectores, matrices, arreglos. Concepto y generación de vectores. Concepto y generación de matrices. Operaciones con matrices. Concepto y generación de arreglos. Tablas, celdas y estructuras.	
4	Teoría / práctica	Funciones y programas. Scripts. Live scripts. Declaraciones condicionales if, switch. Bucles for, while. Introducción a funciones. Resolución de ecuaciones cuadráticas con funciones PRACTICA NRO 1.	

UNIDAD II	FUNCIONES Y VISUALIZACION		
Logros de aprendizaje	Al finalizar la unidad, el estudiante será capaz de crear y utilizar funciones definidas por el usuario en MATLAB, incluyendo funciones anónimas. Además, podrá aplicar técnicas de visualización de datos mediante gráficos lineales, de barras y superficies, integrando funciones y visualización para análisis de datos.		
Semanas	Tipo de Clase	Contenidos	
5	Teoría / práctica	Funciones definidas por el usuario. Introducción. Creación de funciones .m para funciones. Funciones anónimas. Llamado a funciones.	
6	Teoría / práctica	Visualización I. Plot lineal. Plot de barras. Plot de superficies. Uso de funciones y visualización.	
7	Teoría / práctica	Visualización 2. Plot pie (torta). Mapa de calor. Plot radar. Plot 3D PROYECTO I – PRESENTACION / EVALUACION	
8	EVALUACION	EVALUACION PARCIAL	

UNIDAD III	PROGRAMACION ORIENTADA A INGENIERIA		
	Al finalizar la unidad, el estudiante será capaz plantear y ejecutar la resolución de		
Logros de	ecuaciones diferenciales en Matlab, aplicará la serie de Fourier y DFT en MATLAB,		
aprendizaje	comprenderá la conversión analógica-digital, señales discretas y tasa de muestreo,		
	además de adquirir conocimientos sobre circuitos eléctricos, teoría de control y		
	fundamentos de telecomunicaciones como filtros y modulación.		
Semanas	Tipo de Clase	Contenidos	
9	Teoría / práctica	Ecuaciones diferenciales con Matlab. Ecuaciones diferenciales de	
		primer y segundo orden. Integración. Introducción a la serie de	
		Fourier, análisis.	
10 Teoría / práctica Introducción a PDS: Conversión analógic		Introducción a PDS: Conversión analógica-digital. Señales	
		discretas. Tasa de muestreo. Introducción a circuitos eléctricos:	
		Circuitos DC. Circuitos AC.	
11	Teoría / práctica	Introducción a teoría de control: Respuesta en el tiempo, sistema	
		de primer y segundo orden. Análisis de Bode y respuesta en	
		frecuencia. Controlabilidad y observabilidad. Introducción a	
		telecomunicaciones I: Teorema de muestreo. Filtros ideales: filtro	
		pasa bajo, pasa alto y pasa banda.	

UNIDAD IV	USC	D DE INTERFACES Y APLICACIÓN EN INGENIERIA			
Logros de aprendizaje	Al finalizar la unidad, el estudiante será capaz de utilizar interfaces de computadora como USB y Ethernet para la adquisición de imágenes y señales, así como comunicarse con PLCs mediante OPC y Modbus TCP. Además, podrá trabajar con Simulink para la adquisición de señales, y emplear bloques y operadores matemáticos y lógicos en simulaciones.				
Semanas	Tipo de Clase	Contenidos			
12	Teoría / práctica	Uso de interfaces del computador 1. Interface USB. Adquisición de imágenes. Introducción a tratamiento de imágenes. PRACTICA NRO. 2			
13	Teoría / práctica	Uso de interfaces del computador 2. Interface ethernet, comunicación con PLC, uso de OPC.			
14	Teoría / práctica	Uso de interfaces del computador 2. Interface ethernet, comunicación con PLC, uso de OPC. Adquisición se señales 4-20 mA y digitales por medio de modbus TCP. PRACTICA NRO. 3			
15	Teoría / práctica	Introducción a Simulink. Bloques comunes, scopes, operadores matemáticos y lógicos. Adquisición de señales con Simulink por puerto ethernet. APP Designer PROYECTO II – PRESENTACION FINAL / EVALUACION			
16	Evaluación	EXAMEN FINAL			
17	Evaluación	EXAMEN SUSTITURIO			

VI. ESTRATEGIAS DIDÁCTICAS

Aprendizaje Colaborativo, Interrogación socrática.

VII. RECURSOS

- Equipos: computadora, laptop, celular
- Materiales: apuntes de clase del Docente, separatas de problemas, lecturas, videos.
- Plataformas: Matlab / Simulink

VIII. EVALUACIÓN

UNIIDAD	TIPOS DE EVALUACIÓN	PESOS
1	Práctica Calificada (P1)	5.55%
II	Práctica Calificada (P2)	5.55%
III	Proyecto I (PR1)	11.11%
IV	Proyecto II (PR2)	11.11%
V	Examen parcial (EP)	33.33%
VI	Examen final (EF)	33.33%
		100%

Los instrumentos de evaluación del curso son:

- 1. Practicas (P1, P2, P3): Tres, una se anula
- 2. Proyectos (PR1, PR2): Dos, ninguna se anula
- 3. Examen parcial (EP)
- 4. Examen final (EF)

$$NF = (((P1+P2+P3)/2 + PR1 + PR2)/3 + EP + EF)/3$$

IX. REFERENCIAS

Bibliografía Básica

Asadi, F. (2024). *Signals and systems with MATLAB® and Simulink*. Synthesis Lectures on Engineering, Science, and Technology. Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-031-45622-0

Bibliografía complementaria

Gil Rodríguez, M. (2003). Introducción rápida a MATLAB y Simulink para ciencia e ingeniería. Ediciones Díaz de Santos. https://www.diazdesantos.es/ediciones