

UNIVERSIDAD RICARDO PALMA FACULTAD DE INGENIERIA EAP INGENIERIA INFORMATICA

Ciclo Académico 2003 - II

SILABO

I. DATOS GENERALES.

1.1 Curso : Arquitectura de Computadores

1.2 Código : II 05021.3 Número de Créditos : 3

1.4 Carácter : Obligatorio

1.5 Modalidad : Teórico, Práctico, Experimental

1.6 Duración : Semestral

1.7 Semestre : V

1.9 Horas de Clase Semanales : Teoría : 2 Laboratorio : 3

1.10 Pre-requisitos : 402

II. SUMILLA.

El curso de Arquitectura de Computadores y Microprocesadores es una asignatura de especialidad, de carácter teórico-práctico-experimental. Su propósito fundamental es proporcionar a los estudiantes información adecuada sobre:

Microoperaciones. Organización del computador clásico y su programación. Control por microprogramación. CPU. Procesamiento paralelo. CISC vs RISC. Procesamiento numérico. Sistemas de entrada/salida. Multiprocesadores. Microprocesadores y sus aplicaciones. Arquitecturas de los microprocesadores. Microprocesadores CISC y RISC. Prespectivas de los microprocesadores.

III. OBJETIVOS.

3. OBJETIVO GENERAL:

Proporcionar al alumno de Ingeniería Informática:

Las Arquitecturas del computador clásico. Reconoces y evaluar diferentes arquitecturas de computadores. Entender las arquitecturas de los microprocesadores y otros subsistemas del computador fabricados usando microelectrónica y sus respectivas aplicaciones. Reconocer módulos estructurales comerciales y ensamblar PC's. La parte teórica esta orientada a brindar al alumno una idea clara sobre la arquitectura de un computador la cual incluye la estructura, organización, implementación y comportamiento internos del mismo. Dentro del laboratorio se cubre el estudio a fondo de un microcomputador real de tal modo que el alumno este en capacidad de reconocer sus componentes internos y explicar como estos funcionan. Los tópicos a cubrir son Estructura básica de un computador. Evolución de las arquitecturas de los siguientes: computadoras. Representación de Datos. Unidad de Control. Procesadores RISC. Sistemas de Dispositivos Periféricos. Arquitecturas Paralelas. Arquitecturas Pipeline. Entrada/Salida. Arquitecturas Multiproceso. Arquitecturas No convencionales. Microprocesadores y sus aplicaciones. Tendencias futuras.

4. OBJETIVOS ESPECÍFICOS:

Al concluir la asignatura los alumnos deben reconocer las diferentes arquitecturas de los computadores y microprocesadores así como su micro-programación y su aplicación.

El curso de Arquitectura de Computadores tiene los siguientes objetivos:

- Estudiar la arquitectura básica de una computadora digital, sus diferentes componentes, el funcionamiento de estos componentes y la interacción entre estos. Representación de Datos. Unidad de Control. Procesadores RISC vs. CISC. Sistemas de Entrada/Salida. Dispositivos Periféricos. Arquitecturas Paralelas. Arquitecturas Pipeline. Arquitecturas Multiproceso. Arquitecturas No convencionales. Microprocesadores y sus aplicaciones
- Estudiar y evaluar diferentes arquitecturas de computadoras existentes y asimismo cuales son las tendencias futuras en el diseño de computadoras.
- Al terminar el curso los alumnos deberán estar en la capacidad de analizar un microcomputador y explicar como funciona.
- Al terminar los Proyectos del laboratorio se cubre el estudio a fondo de un microcomputador real de tal modo que el alumno este en capacidad de reconocer sus componentes internos, explicar y como interactuar con los periféricos u otros dispositivos y equipos a controlar con el Computador.

IV. CONTENIDO ANALÍTICO.

1. Introducción (2 horas).

- 1.1. Modelos de Computación.
- 1.2. Maquinas Virtuales.
- 1.3. Maquinas Multinivel.
- 1.4. Definición del concepto de Arquitectura del Computador.
- 1.5. Evolución de la Arquitectura del Computador.

2. Estructura básica de un computador (4 horas).

- 2.1. Modelo de Von Neumann
- 2.2. Autómatas Finitos
- 2.3. Interrupciones.
- 2.4. Estructura y clases de Buses.
- 2.5. Arquitectura del conjunto de instrucciones

3. La Unidad Central de Proceso (4 horas).

- 3.1 Organización básica.
- 3.2 Organización del Procesador Numérico.
- 3.3 Control de Flujo.
 - 3.3.1 Control por hardware.
 - 3.3.2 Control microprogramado.
- 3.4 Unidad de transformación de datos (UAL).

4. Procesadores RISC (2 horas).

- 4.1 Clasificación de Procesadores: CISC vs. RISC.
- 4.2 Clasificación de instrucciones.
- 4.3 Procesadores con un registro de estado general.
- 4.4 Procesadores con stack.
- 4.5 Arquitecturas RISC.
 - Ventajas y Desventajas.
 - Características principales.

5. Organización de la memoria (4 horas).

- 5.1. Representación interna de datos.
- 5.2. Tipos de memorias.
- 5.3. Organizaciones básicas de memoria.
- 5.4. Jerarquías de memoria.
- 5.5. Memoria virtual.
- 5.6. Memoria cache.

6. Organización de Entrada y Salida (4 horas).

- 6.1 Dispositivos de Entrada/Salida.
- 6.2 Buses.
- 6.3 Mecanismos de control.

- Interrupciones
- Acceso directo a memoria.
- 6.4 Diseños de interfases de Entrada/Salida.

7. Arquitecturas Paralelo (2 horas).

- 7.1 Introducción.
- 7.2 Clasificación.
- 7.3 Paralelismo en sistemas de un solo procesador.
- 7.4 Pipeline
- 7.5 Paralelismo en sistemas de varios procesadores.

8. Arquitecturas No Convencionales (2 horas).

- 8.1 Introducción.
- 8.2 Arquitectura de Máquina de Flujo de Datos.

9. Arquitectura del Microprocesador (4 horas).

- 9.1 Aspectos generales.
- 9.2 Juego de registros.
- 9.3 Modos de direccionamiento.
- 9.4 Juego de instrucciones.
 - Instrucciones de transferencia de información.
 - Instrucciones aritmético-lógicas.
 - Instrucciones de control de flujo.
 - · Saltos y lazos.
 - Pila, subrutinas y paso de parámetros.
- 9.5 Programación en lenguaje ensamblador.
- 9.6 Código máquina correspondiente a un programa ensamblador.
 - Codificación de las instrucciones
 - Ensamblado y enlazado
 - Carga y ejecución

V. PROYECTOS DEL CURSO.

- 5.1 Proyecto N

 1. Arquitectura del Micro-Computador con el CPU Z-80. Implementación y Programación. Monografía.
- 5.2 Proyecto Nº 2. Ensamblaje y Diagnóstico de PC. Desarrollo Teórico Práctico. Diagrama de flujo del Ensamblaje de PC. Diagrama de flujo del Diagnóstico de PC.
- 5.3 Proyecto Nº 3. Uso y Programación del Asembler y Macroasembler de PC. Emuladores del funcionamiento de PC. Aplicaciones prácticas.
- 5.4 Proyecto Nº 4. Uso y Programación de las Interfaces de PC. Puertos Seriales y Paralelos. Aplicaciones prácticas. Microcontroladores.

VI. PROCEDIMIENTOS DIDACTICOS

6.1. Métodos de Enseñanza:

la asignatura combina las técnicas de:

- . Exposición
- . Interrogación didáctica
- . Solución de problemas
- . Debate
- . Exposición grupal,
- . Análisis teórico y
- . Logro Práctico-experimental

En este último caso, los estudiantes se agrupan para elaborar los proyectos con sus respectivas Monografías del desarrollo y sustentación de los mismos.

- 6.2. Procedimientos didácticos:
 - . Exposición con ayudas audiovisuales
 - . Interrogación didáctica.
 - . Debate entre grupos de discusión
 - . Solución de problemas en forma práctica y/o con simulaciónes.

VII. RECURSOS EQUIPOS Y MATERIALES DE ENSEÑANZA:

- 7.1. Pizarra y tizas y/o plumones.
- 7.2. Retroproyector y transparencias.
- 7.3. Guías para los Proyectos.
- 7.4. Separatas puntuales.
- 7.5. Laboratorio de Dispositivos Electrónicos.
- 7.6. Laboratorio de Computo.

VIII. METODOLOGÍA.

El programa del curso se desarrollará sobre la base de la exposición del profesor con la participación activa de los estudiantes, teniendo en cuenta lo siguiente:

- Revisión de material de libro de texto previo al desarrollo de cada tema.
- Exposición general del tema.
- Presentación de ejemplos reales en aquellos casos en los que sea aplicable.
- Trabajos de investigación.
- Sustentación de trabajos.
- Lectura de bibliografía recomendada.

En las clases de la parte de laboratorio se desarrollarán 4 proyectos.

IX. EVALUACION.

- Evaluaciones Rapidas (EVR), con una duración no mayor a 30 minutos.
- 1 Exámen Parcial
- 1 Exámen Final
- Promedio de proyectos de laboratorio (PPRL)
- PRL1 = (PRL1g+PRL1i) / 2
- PRL1g = Promedio grupal del proyecto Nº 1
- PRL1i = Promedio individual del proyecto Nº 1
- PPRL = (PRL1 +PRL2+PRL3+PRL4) / 4
- Nota Final = (PEVR + 2*EXP + 3*EXF + 3*PPRL) / 9

X. PROGRAMA CALENDARIZADO.

Sem.	Capítulo	Temas		
1	1	Modelos de Computación. Maquinas Virtuales. Maquinas Multinivel		
		Definición del concepto de Arquitectura. Evolución de las arquitecturas		
2	2	Modelo de Von Neumann. Ciclo de Trabajo. Interrupciones		
3	2	Estructura y Clases de buses. Arquitectura del conjunto de instrucciones. Autómatas finitos.		
4	3	Organización básica de la UCP. Organización del Procesador Numérico.		
5	3	Control de flujo de datos. Unidad de transformación de datos		
6	4	Procesadores RISC vs. CISC.		
7	5	Organización de la memoria. Representación interna de datos. Tipos de memoria		
8		Examen Parcial		
9	5	Organizaciones básicas. Jerarquías de memoria. Memoria Cache. Memoria Virtual		
10	6	Organización de Entrada/Salida. Dispositivos de E/S. Buses		
11	6	Mecanismos de control. Diseño de interfases de E/S.		
12	7	Arquitecturas Paralelo. Pipeline. Multiprocesadores.		
13	8	Arquitecturas No Convencionales. Maquina de Flujo de Datos. Microcontroladores soporte físico y lógico.		
14	9	Arquitectura de Microprocesadores. Aspectos Generales. Juegos de Registros.		
15	9	Modos de direccionamiento. Conjunto de instrucciones.		
		Programación en lenguanje ensamblador		
16		Examen Final		
17		Examen Sustitutorio		

XI. BBIBLIOGRAFÍA:

- J. Hennessy y D. Patterson "Computer Architecture A Quantitative Approach" McGraw Hill, 1996.
- Hayes, John P "Computer Architecture and Organization" Mac Graw-Hill
- Tanenbaum, Andrew S "Organización de Computadoras: Un enfoque estructurado"
 Ed. Prentice-Hall, 4ta. Edición.
- Lorin, Harold "Introduction to Computer Architecture and Organization"
- D. Patterson; J. Hennessy "Organización y diseño de computadores, la interfaz Hardware-Software" McGraw Hill, 1993
- W. Stallings, Organización y Arquitectura de Computadores, 5ta. Edición, Prentice Hall.

BIBLIOGRAFÍA COMPLEMENTARIA:

Tm	TITULO	AUTOR	
1	Arquitectura de Computadoras	Hennessy	Ultima Edición
2	Conecciones en el IBM PC/XT/AT	Seyer, D.	Ultima Edición
3	Organización de Computadoras	Tenebaum Andrens	Ultima Edición
4	PETER NORTON Soluciones y Problemas	Peter Norton	Ultima Edición
	para PC		
5	80286 Arquitectura y Sistemas	Straus, Edmund	Ultima Edición
6	A Fondo Mantenimiento y Sistemas	Cannon, Donl	
	Digitales		
7	A Fondo Microprocesadores	Cannon, Donl	Ultima Edición
8	Arquitectura de Computadoras	Morris Mano, M	Ultima Edición
9	Programación del Z80	Zaks, Rodnay	Ultima Edición
10	Reparación y mantenimiento de	Tooley, Michael	Ultima Edición
	Computadoras	-	
11	Robótica	Fuks	Ultima Edición
12	Robótica una Introducción	Mccloy, D	Ultima Edición
13	Servomecanismos	Bulliet	Ultima Edición
14	Sistema Automático de Control	Kuo, Benjamin C.	Ultima Edición
15	Sistemas Digitales	Peterson, Hill	Ultima Edición
16	Sistemas Modernos de Control	Dorf, C. Richard.	Ultima Edición
17	Técnicas y Proyecto de Interfases	Penfold, R.A.	Ultima Edición
18	Upgraming and Reparin PCS	Mueller, Scott	Ultima Edición
19	Preparación y Evaluación de Proyectos	Nassir Sapag Chain	Ultima Edición
20	Fundamentos de Microprocesadores	Tokheim, Roger L.	Ultima Edición
21	Fundamentos de Programación de	Murphy Smoot	Ultima Edición
	Computadoras		
22	Guía de Programación de 80360	Lance Leventhal	Ultima Edición
23	Introducción a la Tecnología Digital	Porat y Barna	Ultima Edición
24	Lógica Digital y Diseño de Computadoras	Morris Mano, M	Ultima Edición
25	Los Microprocesadores de INTEL	Barry B. Brey	Ultima Edición
26	Los Microprocesadores y la Radioafición	Helms, Harry L.	Ultima Edición
27	Microcomputadoras	Long Larry	Ultima Edición
28	Microprocesadores	Angulo, J. M.	Ultima Edición
29	Microprocesadores Conceptos y	Buck Enginering	Ultima Edición
	Aplicaciones		
30	Microprocesadores de 32 bites	Angulo, J. M.	Ultima Edición
31	Microprocesadores Diseño Práctico	Angulo, J. M.	Ultima Edición
32	Microprocesadores Troubleshooting	Buck Eninering	Ultima Edición
30	Periféricos y Accesorios	Peter Norton	Ultima Edición
31	Microcontroladores de 8 bites	Martinez Barron	Ultima Edición