PALMA.

UNIVERSIDAD RICARDO PALMA

Facultad de Ingeniería ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA INDUSTRIAL

PLAN DE ESTUDIOS 2000 SÍLABO

1. DATOS ADMINISTRATIVOS

Asignatura : ALGORITMOS COMPUTACIONALES

Código:IN 0207Área académica:SistemasCondición:ObligatorioNivel:Il CicloCréditos:2Número de horas por semana:4 hrs.

Teoría: 1 Laboratorio: 3

Requisito : IN 0103 Lógica

Profesores : Ada Cebreros Delgado de la Flor, Jaime Guerra Saavedra.

2. SUMILLA.

La asignatura de Algoritmos Computacionales corresponde al segundo ciclo de la facultad de ingeniería industrial. Es un curso desarrollado en forma teórica-práctico, que describe las diferentes estructuras con la finalidad de analizar y diseñar algoritmos y programas computacionales en el ambiente de programación seleccionado. Se describen también las diferentes técnicas y métodos algorítmicos de tratamiento de los datos. Trata los temas: Introducción, Programa y lenguaje de programación, Diseño de Algoritmos, Elementos de algoritmos, Concepto de programación estructurada, introducción de asignación , Subprogramas y parámetros , Estructuras Selectivas y Repetitivas, Arreglos, Depuración, Pruebas, Comprobación, Tratamiento de literales, Búsqueda y Clasificación Interna, Estructura de Datos, Eficiencia de algoritmos.

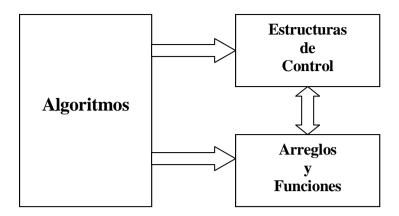
El ingeniero industrial requiere una fuerte preparación en las técnicas modernas de modelación de datos y de programación, ya que las mismas constituyen, conjuntamente, el instrumento más importante que permite a este egresado hacer un uso eficiente y verdaderamente profesional de las computadoras en cualquier actividad de cualquier esfera

3. COMPETENCIAS DE LA CARRERA

Las competencias de la carrera dentro del perfil del ingeniero industrial donde se relaciona el curso son dos:

- Conduce, gestiona y lidera empresas en marcha con el objeto de generar valor agregado y aportar al desarrollo nacional desde el sector de actividad económica en el que se desempeña, preservando el medio ambiente. (Gestión empresarial)
- Formula, elabora, evalúa e implementa proyectos de mejora de la infraestructura productiva, optimización de los procesos que generan valor, fomentando una cultura de calidad que involucre la participación del personal y la colaboración de los proveedores.(Proyectos de mejora).

4. COMPETENCIAS DEL CURSO:


Conoce los conceptos fundamentales para el diseño de algoritmos.

- 1. Identifica, clasifica y aplica los diferentes tipos de datos.
- 2. Declara variables y constantes.
- 3. Utiliza sentencias de asignación: simple y compuesta.
- 4. Utiliza las herramientas del diseño algorítmico: Diagrama de flujo, Pseudocódigo con lógica y rigurosidad.
- 5. Conoce y aplica estructuras: Secuenciales, Condicional, Repetitivas.
- 6. Analiza y diseña algoritmos para la solución de problemas con lógica.
- 7. Diseña y manipula arreglos : unidimensionales y bidimensionales.
- 8. Analiza, aplica y evalúa diferentes métodos con arreglos.
- 9. Utiliza, identifica y manipula funciones y cadenas.
- 10. Identifica y aplica métodos de búsqueda y ordenamiento con eficacia y precisión.

PÁGINA: 1

FACULTAD DE INGENIERÍA PLAN DE ESTUDIOS 2000

5. RED DE APRENDIZAJE

UNIDADES DE APRENDIZAJE

UNIDAD DE APRENDIZAJE Nº 1: ALGORITMOS

Logro de la unidad: Diseña y aplica herramientas de programación con lógica y rigurosidad.

SEMANA	CONTENIDOS	ACTIVIDADES
1	Conceptos básicos: algoritmo, programa, lenguaje de programa-	-Clase expositiva
	ción: Lenguaje de máquina, bajo nivel, alto nivel. Traductores,	-Práctica dirigida N.1
	interpretes y compiladores.	-Entrega de separata
2	Introducción al Lenguaje programación. Herramientas de diseño	-Clase expositiva
	de programación: Pseudocódigo, diagrama de flujo, tipos de	-Práctica dirigida N.2
	datos .	-Asignación de lectura
		-Practicas con enunciados básicos
		-Asesoría
3	Tipos de datos, Identificadores, Palabras reservadas, variables y	-Clase expositiva
	constantes,	-Práctica dirigida N.3
		-Asesoría
		-Primer laboratorio calificado

DESCRIPCIÓN DE LOS PROCEDIMIENTOS DIDÁCTICOS: La motivación, exposición y debate grupos. Él dialogo permanente. Explicación, demostración. Creación de grupos para la ejemplificación, ejercitación.

RELACIÓN DE EQUIPOS DE ENSEÑANZA: La pizarra, el proyector y transparencias. La computadora, data display. RELACIÓN DE LECTURAS: Separata

REFERENCIAS BIBLIOGRÁFICAS:

- 1. Joyanes Aguilar. Fundamentos de la programación. 1,999. Editorial: Iberoamericana. Número de Paginas: 301.
- 2. Dietel. C# How to Program. 2004. Editorial: Prentice Hall. Número de Paginas: 1568.

UNIDAD DE APRENDIZAJE Nº 2: ESTRUCTURAS DE CONTROL

Logro de la unidad: Identifica y aplica las estructuras de control: condicional, selectiva y repetitiva para la solución de problemas con lógica y precisión.

SEMANA	CONTENIDOS	ACTIVIDADES
4	Estructura general de un programa. La estructura de programa. Tipos de	-Clase expositiva
	instrucciones: asignación, entrada / salida, bifurcación y repartición. Elemen-	-Práctica dirigida N.4
	tos básicos: acumuladores. bucles, contadores, interruptores. Cabecera del	-Asignación de lectura
	programa, declaración: constantes y variables, comentarios, estilo de pro-	-Practicas con enunciados básicos
	gramación	-Asesoría
5	Escribir Estructuras secuenciales. Aplicar las estructuras a procesos sim-	-Clase expositiva
	ples, diagrama de flujo, pseudo código y codificación.	-Práctica dirigida N.5
		-Asesoría

FACULTAD DE INGENIERÍA PLAN DE ESTUDIOS 2000

6	Estructura Condicional if – else. Identificar y aplicar la estructura de decisión simple y múltiple. Procesos de condicionamiento múltiple: la estructura switch.	-Clase expositiva -Práctica dirigida N.6 -Asignación de lectura -Ejemplos con situaciones reales -Asesoría -Segundo laboratorio calificado	
7	Estructura repetitiva while. Identificar y aplicar la estructura repetitiva while.	-Clase expositiva -Práctica dirigida N.7 -Asesoría	
8	EXAMEN PARCIAL		
9	Estructura repetitiva: Do-While.	-Clase expositiva -Práctica dirigida N.8 -Asignacion de lectura -Asesoría -Tercer laboratorio calificado -Entrega del formato del proyecto	
10	Estructura repetitiva: for. Aplicación de las funciones ramdom, para la generación de números aleatorios	-Clase expositiva -Practica dirigida N.9 -Asesoría -Entrega del primer avance del proyecto	

DESCRIPCIÓN DE LOS PROCEDIMIENTOS DIDÁCTICOS: La exposición con visualización física de los componentes para contrastar, discusión grupal. Trabajo de Investigación.

RELACIÓN DE EQUIPOS DE ENSEÑANZA: El computador, el data display. Los elementos mostrados en clase.(Tarjeta madre, memorias, etc)

RELACIÓN DE LECTURAS: Separata

REFERENCIAS BIBLIOGRÁFICAS:

1. Dietel. C# How to Program. 2004. Editorial: Prentice Hall. Número de Paginas: 1568.

UNIDAD DE APRENDIZAJE Nº 3: ARREGLOS Y FUNCIONES

Logro de la unidad: Diseña y manipula arreglos, funciones y cadenas. Identifica y aplica métodos de búsqueda y ordenamiento con eficacia y precisión.

SEMANA	CONTENIDOS	ACTIVIDADES	
11	Arreglo unidimensionales, aplicación de ordenamientos. Procesos de búsqueda. Declaración del arreglo, aplicaciones.	-Clase expositiva -Práctica dirigida N.10 -Asignación de lectura -Discusión de diferentes métodos -Asesoría -Cuarto laboratorio calificado	
12	Arreglos Bidimensionales. Implementar y manipular arreglos.	-Clase expositiva -Práctica dirigida N.11 -Asesoría -Entrega del segundo avance del proyecto	
13	Programación modular. Funciones: concepto, declaración, definición, llamada a una función. Aplicaciones.	-Clase expositiva -Práctica dirigida N.12 -Asignación de lectura -Asesoría	
14	Cadenas: Concepto, declaración y acceso. Manipulación: acceso, lecturas, funciones.	-Clase expositiva -Práctica dirigida N.13 -Asesoría	
15	Tratamiento de literales. Búsqueda binaria y clasificación interna.	-Clase expositiva -Práctica dirigida N.14 -Asesoría -Presentación y sustentación del Proyecto	
16	EXAMEN FINAL		
17	EXAMEN SUSTITUTORIO		

FACULTAD DE INGENIERÍA PLAN DE ESTUDIOS 2000

DESCRIPCIÓN DE LOS PROCEDIMIENTOS DIDÁCTICOS: La exposición y lectura comentada, La discusión grupal.

RELACIÓN DE EQUIPOS DE ENSEÑANZA: El computador, el data display . Computador, con el software especifico. El proyector, transparencias.

RELACIÓN DE LECTURAS: Separatas.

REFERENCIAS BIBLIOGRÁFICAS:

- 1. Francia, Dario Rafael . Visual C#.NET. 2003. Editorial: Macro. Número de Páginas: 302
- 2. Ceballos, Francisco Javier, El Lenguaje de Programación C#. 2003. Editorial: Alfa Omega. Número de Páginas: 302.
- 3. http://c.conclase.net. Método de Ordenación. Burbuja

7. METODOLOGIA:

La metodología de curso esta orientada a promover la participación activa y así favorecer el aprendizaje del alumno. Se utilizará el computador como herramienta básica para la demostración y ejemplificación.

El profesor tendrá a su cargo la exposición de los diferentes temas del curso y además se complementará con la intervención de los alumnos. Se formaran grupos de discusión y debates dirigidos. Se motivará a los alumnos para la utilización de Internet, correo electrónico, etc.

8. CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN:

Criterios:

- Intervenciones en Clase.
- Asistencia Obligatoria.
- Puntualidad.
- Nivel de conocimiento y/o aprendizaje
- Nivel de aprendizaje en el laboratorio
- Exposiciones.
- Interés y motivación por el curso

Instrumentos:

Laboratorios Calificados : LC Examen Parcial : EP Examen Final : EF

Examen Sustitutorio : ES: reemplaza a EP o EF.

Promedio Final : PF

La nota final será la resultante de la siguiente fórmula:

$$PF = \frac{LC + EP + EF}{3}$$

9. REFERENCIAS BIBLIOGRÁFICAS Y OTRAS FUENTES

- 1. Dietel. C# How to Program. 2004. Editorial: Prentice Hall. Número de Paginas: 1568. A., Hopcroft J., Ullman J. "Estructuras de Datos y Algoritmos"; Addison-Wesley 1988, Wilmington-Delaware EUA.
- 2. Hernandez, R.; Lazaro, J.C.; Dormido, R.; Ros, S. "Estructura de Datos y Algoritmos"; Prentice Hall 2001, Madrid España.
- 3. Brassard, G. Bratlev, P. "Fundamentos de Algoritmia". Prentice Hall 1998 Madrid.
- 4. Ceballos, Francisco Javier. El Lenguaje de Programación C#. 2003. Editorial: Alfa Omega.
- 5. Joyanes Aguilar. Fundamentos de la programación. 1,999. Editorial: Iberoamericana.