

Universidad Ricardo Palma

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA INDUSTRIAL DEPARTAMENTO ACADÉMICO DE CIENCIAS

PLAN DE ESTUDIOS 2006-II

SÍLABO

1. DATOS ADMINISTRATIVOS

AsignaturaFÍSICA IICódigo: ID 0305Área Académica: FísicaCondición: ObligatorioCiclo: III CicloCréditos: 4Número de horas por semana: 7 hrs.

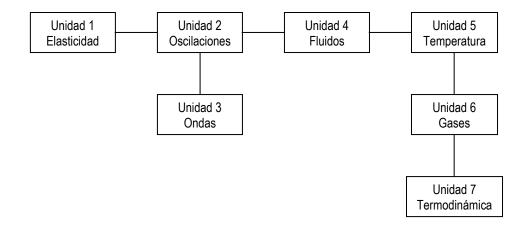
Teoría: 2 Práctica: 2 Laboratorio: 3

Requisito : ID 0205 Física I

Profesores : Rodolfo Ventocilla A., Pablo Lino O.

2. SUMILLA.

El curso Física II corresponde al tercer ciclo de formación de la Escuela Académico Profesional de Ingeniería Industrial. El curso es de naturaleza Teórico – Práctico – Experimental y brinda a los estudiantes los principios básicos de la Física General. Tiene como objetivo general describir y explicar los fenómenos relacionados con la Mecánica de los medios continuos y de la Termodinámica. Trata los temas: Elasticidad, Movimiento Oscilatorio, Ondas Mecánicas, Estática de Fluidos, Dinámica de Fluidos, Teoría Cinética de los Gases, Calor y Temperatura, Trabajo y Primera Ley de la Termodinámica, Segunda Ley de la Termodinámica y Entropía.


3. COMPETENCIAS DE LA CARRERA QUE EL CURSO DESARROLLA

- Conduce, gestiona y lidera empresas en marcha con el objeto de generar valor agregado y aportar al desarrollo nacional desde el sector de actividad económica en el que se desempeña.
- Formula, elabora, evalúa e implementa proyectos de inversión para la puesta en valor de los recursos naturales o de ampliación o renovación de la infraestructura productiva, aplicando tecnologías adecuadas que armonicen con el medio ambiente y contribuyan a la generación de empleo.
- Formula, elabora, evalúa e implementa proyectos de mejora de la infraestructura productiva, optimización de los procesos que generan valor y productividad fomentando una cultura de calidad que involucre la participación del personal y la colaboración de los proveedores.

4. COMPETENCIAS DEL CURSO

- Describe las deformaciones mecánicas básicas de los sólidos, en términos de los conceptos de esfuerzo deformación.
- Analiza, describe y caracteriza el movimiento oscilatorio mecánico, desde el punto de vista cinemático, dinámico y energético, tomando como modelo el sistema masa-resorte.
- Describe y caracteriza el movimiento ondulatorio mecánico desde el punto de vista cinemático, dinámico y energético, analizando los casos de ondas transversales, longitudinales, viajeras y estacionarias, aplicando los resultados obtenidos en el análisis de casos sencillos, por ejemplo en la acústica.
- Formula, interpreta y aplica los principios y leyes básicas que gobiernan la estática y la dinámica de los fluidos.
- Describe y aplica los conceptos de temperatura y calor en la comprensión de las propiedades térmicas de la materia.
- Diferencia, caracteriza y aplica los modelos macroscópico y microscópico de los gases y aplica sus leyes en la termodinámica.
- Formula e Interpreta conceptos y leyes que caracterizan y gobiernan a un sistema termodinámico sometido a procesos térmicos fundamentales.

5. RED DE APRENDIZAJE

6. UNIDADES DE APRENDIZAJE

UNIDAD DE APRENDIZAJE Nº 1: ELASTICIDAD

Logros de la unidad: Analiza y calcula deformaciones y esfuerzos en diferentes casos de cuerpos sometidos a fuerzas o cargas externas, valorando su importancia en su carrera.

SEMANA	CONTENIDO	ACTIVIDADES
1	Elasticidad de los materiales.	Introducción al curso.
	Esfuerzo y Deformación.	Análisis de casos.
	Ley de Hooke. Módulos de Elasticidad.	Solución de ejercicios y problemas.
	Energía elástica.	

REFERENCIAS BIBLIOGRÁFICAS:

- Sears Zemansky Young Freedman, Física Universitaria, Volumen 1, 2004, Editorial Pearson Addison Wesley, Undécima Edición, México, 414 al 435 páginas.
- 2. Tipler A. Paúl, Física para la Ciencias y la Tecnología, volumen 1, 2003, Editorial Reverté S.A., Cuarta Adición, México, 359 al 374 páginas.
- 3. Serway Raymond A.- Jewett, Física para Ciencias e Ingeniería, volumen 1, 2006, Editorial Thomson Paraninfo, 1ª Edición, México.

DIRECCIONES ELECTRÓNICAS

- 1. http://www.sc.ehu.es/sbweb/fisica/default.htm
- 2. http://teleformacion.edu.aytolacoruna.es/FISICA/document/
- 3. http://colossrv.fcu.um.es/ondas/cursoondas.htm

UNIDAD DE APRENDIZAJE Nº 2: OSCILACIONES

Logros de la unidad: Analiza, distingue y aplica las ecuaciones de la cinemática, dinámica y energía a los diferentes casos de sistemas oscilantes, con eficiencia y responsabilidad.

SEMANA	CONTENIDO	ACTIVIDADES	
2	Movimiento Armónico Simple (MAS).	Introducción.	
	Cinemática del MAS. Dinámica del MAS.	Análisis de casos. Ejemplos.	
	Energía de un oscilador armónico simple.	Experimento Demostrativo.	
		Lab. N°1: Elasticidad	
3	Movimiento Armónico Amortiguado.	Solución de ejercicios y problemas.	
Oscilaciones Forzadas y Resonancia. 1ra Práctica Calificada		1ra Práctica Calificada	
	Combinaciones de MAS.	Lab. N° 2: Movimiento Armónico Simple y	
		Amortiguado.	

RELACION DE LECTURAS

- Sears Zemansky Young Freedman, Física Universitaria, Volumen 1, 2004, Editorial Pearson Addison Wesley, Undécima Edición, México, 476 al 514 páginas.
- 2. Tipler A. Paul, Física para la Ciencias y la Tecnología, volumen 1, 2003, Editorial Reverté S.A., Cuarta Adición, México, 403 al 440 páginas.

ESCUELA DE INDUSTRIAL FÍSICA II PÁGINA: 2

3. Serway Raymond A.- Jewett, Física para Ciencias e Ingeniería, volumen 1, 2006, Editorial Thomson Paraninfo, 1ª Edición, México.

DIRECCIONES ELECTRÓNICAS

- 1. http://www.sc.ehu.es/sbweb/fisica/default.htm
- 2. http://teleformacion.edu.aytolacoruna.es/FISICA/document/
- 3. http://colossrv.fcu.um.es/ondas/cursoondas.htm

UNIDAD DE APRENDIZAJE Nº 3: ONDAS MECANICAS

Logros de la unidad: Formula, caracteriza y cuantifica las ecuaciones y propiedades de diferentes clases de ondas, valorando su importancia en la ingeniería.

SEMANA	CONTENIDO	ACTIVIDADES
	Concepto de onda. Características de las ondas.	Introducción. Análisis de casos.
4	Tipos de Ondas.	Experimento Demostrativo.
	Descripción matemática de la propagación de una onda en una	Solución de ejemplos y problemas
	dimensión. Onda senoidal o armónica.	Lab. N°3: Movimiento Ondulatorio y Ondas
		Estacionarias.
	Velocidad de propagación de la onda. Velocidad de oscilación.	Análisis de casos.
	Ecuación de la onda en una dimensión.	Experimento demostrativo.
5	Potencia e Intensidad de una Onda.	Solución de ejemplos y problemas.
	Principio de Superposición. Interferencia de Ondas Armónicas.	Lab. N°4: Ondas Sonoras
	Ondas Estacionarias y Resonancia.	
	Ondas Sonoras. Características.	Experimento demostrativo.
6	Potencia e Intensidad de las Ondas sonoras. Sistemas Vibratorios	production as sjoinpies y productions.
	y fuentes de sonido.	Lab. Nº 5. Principio de Arquímedes
	Efecto Doppler.	2da Práctica Calificada

RELACION DE LECTURAS

- 1. Sears Zemansky Young Freedman, Física Universitaria, Volumen 1, 2004, Editorial Pearson Addison Wesley, Undécima Edición, México, 547 al 639 páginas.
- 2. Tipler A. Paúl, Física para la Ciencias y la Tecnología, volumen 1, 2003, Editorial Reverté S.A., Cuarta Adición, México, 441 al 505 páginas.
- 3. Serway Raymond A.- Jewett, Física para Ciencias e Ingeniería, volumen 1, 2006, Editorial Thomson Paraninfo, 1ª Edición, México.

DIRECCIONES ELECTRÓNICAS

- 1. http://www.sc.ehu.es/sbweb/fisica/default.htm
- 2. http://teleformacion.edu.aytolacoruna.es/FISICA/document/
- 3. http://colossrv.fcu.um.es/ondas/cursoondas.htm

UNIDAD DE APRENDIZAJE Nº 4: FLUIDOS

Logros de la unidad: Aplica las leyes de la estática y la dinámica de los fluidos a los diferentes casos, con rigor y empeño.

SEMANA	CONTENIDO	ACTIVIDADES	
7	Estática de fluidos.	Análisis de casos.	
	Densidad. Peso Específico y Presión.	Experimento Demostrativo.	
	Variación de la presión en un fluido con la profundidad.	Solución de ejercicios y problemas	
	Principios de Pascal y de Arquímedes.	Primer control de laboratorio (CL1).	
8	EVALUACIÓN: UNIDADES 1, 2, 3 y 4	EXAMEN PARCIAL.	
9	Dinámica de fluidos. Características del movimiento. Fluido Ideal.	Análisis de Casos.	
	Líneas de flujo. Tubo de flujo.	Experimento Demostrativo.	
	Ecuaciones de continuidad y de Bernoulli.	Lab. N° 6: Fluidos en Movimiento.	
	Líquidos Reales y Viscosidad. Ecuación de Poiseuille.	Solución de ejemplos y problemas.	
10	Temperatura. Descripciones Macroscópica y Microscópica de un	un Introducción.	
	sistema.	Análisis de casos.	
	Concepto de Temperatura. Equilibrio Térmico. Medición de Tempe-	Solución de ejercicios y problemas.	
	ratura y Escalas Termométricas.	Experimento Demostrativo.	
	Dilatación Térmica	Lab. N° 7: Coeficiente de Dilatación Lineal.	
11	Concepto de Calor. Energía interna, energía térmica.	Análisis de casos.	
	Capacidad Calorífica. Calor Específico. Equivalente Mecánico del	Experimento demostrativo.	
	Calor.	Lab. N° 8: Calor Específico de un Sólido.	
	Cambios de Estado.	Solución de ejercicios y problemas.	
	Transmisión del Calor. Conducción, Convección y Radiación.	3ra. Práctica Calificada.	

ESCUELA DE INDUSTRIAL FÍSICA II PÁGINA: 3

REFERENCIA BIBLIOGRÁFICAS:

- 1. Sears Zemansky Young Freedman, Física Universitaria, Volumen 1, 2004, Editorial Pearson Addison Wesley, Undécima Edición, México, 640 al 683 páginas.
- 2. Tipler A. Paúl, Física para la Ciencias y la Tecnología, volumen 1, 2003, Editorial Reverté S.A., Cuarta Adición, México, 537 al 540 páginas.
- 3. Serway Raymond A.- Jewett, Física para Ciencias e Ingeniería, volumen 1, 2006, Editorial Thomson Paraninfo, 1ª Edición, México.

DIRECCIONES ELECTRÓNICAS

- 1. http://www.sc.ehu.es/sbweb/fisica/default.htm
- 2. http://teleformacion.edu.aytolacoruna.es/FISICA/document/
- 3. http://colossrv.fcu.um.es/ondas/cursoondas.htm

UNIDAD DE APRENDIZAJE Nº 6: GASES

Logros de la unidad: Describe y aplica los modelos macroscópico y microscópico de los gases en los procesos termodinámicos, con eficiencia y responsabilidad.

SEMANA	CONTENIDO	ACTIVIDADES	
12	Gas Ideal. Descripción Macroscópica. Ecuación de Estado. Des-	Análisis de casos.	
	cripción Microscópica de un gas Ideal. Teoría cinética.	Experimento Demostrativo.	
		Solución de ejercicios y problemas.	
		Lab. N° 9: Proceso Isovolumétrico.	
13	Modelo molecular de un gas ideal. Cálculo cinético de la presión.	Análisis de casos.	
	Interpretación Cinética de la Temperatura.	Solución de ejercicios.	
	Energía Interna. Teorema de la Equipartición de la Energía.	Lab. N°10: Presión de Vapor Saturado.	
	Capacidades caloríficas de los gases ideales. Gases Reales.	·	

REFERENCIAS BIBLIOGRÁFICAS:

- 1. Sears Zemansky Young Freedman, Física Universitaria, Volumen 1, 2004, Editorial Pearson Addison Wesley, Undécima Edición, México, 640 al 683 páginas.
- 2. Tipler A. Paúl, Física para la Ciencias y la Tecnología, volumen 1, 2003, Editorial Reverté S.A., Cuarta Adición, México, 537 al 540 páginas.
- Serway Raymond A.- Jewett, Física para Ciencias e Ingeniería, volumen 1, 2006, Editorial Thomson Paraninfo, 1ª Edición, México.

DIRECCIONES ELECTRÓNICAS

- 1. http://www.sc.ehu.es/sbweb/fisica/default.htm
- 2. http://teleformacion.edu.aytolacoruna.es/FISICA/document/
- 3. http://colossrv.fcu.um.es/ondas/cursoondas.htm

UNIDAD DE APRENDIZAJE Nº 7: TERMODINÁMICA

Logros de la unidad: Aplica las leyes de la termodinámica a diferentes casos de maquinas Térmicas, apreciando su importancia en la ingeniería.

SEMANA	CONTENIDO	ACTIVIDADES
14	Calor y Trabajo. Primera Ley de la Termodinámica. Aplicaciones.	Análisis de casos.
	Procesos Isotérmicos, Isobáricos, Isovolumétricos y Adiabáticos.	Experimento demostrativo.
		Solución de ejercicios y problemas.
		4ta Práctica Calificada.
		Recuperación de Laboratorio.
15	Máquinas Térmicas. Segunda Ley de la Termodinámica.	Análisis de casos
	Procesos Reversibles e Irreversibles, Ciclo de Carnot.	Experimento demostrativo.
	Entropía: Procesos Reversibles e Irreversibles. Entropía y Segunda	Solución de problemas.
	Ley. Entropía y Probabilidad.	Segundo control de Laboratorio (CL2).
16	EVALUACION UNIDADES 4, 5, 6 y 7	EXAMEN FINAL
17	EVALUACIÓN Todas las Unidades	EXAMEN SUSTITUTORIO

RELACION DE LECTURAS

- 1. Sears Zemansky Young Freedman, Física Universitaria, Volumen 1, 2004, Editorial Pearson Addison Wesley, Undécima Edición, México, 723 al 791 páginas.
- 2. Tipler A. Paúl, Física para la Ciencias y la Tecnología, volumen 1, 2003, Editorial Reverté S.A., Cuarta Adición, México, 561 al 648 páginas.
- 3. Serway Raymond A.- Jewett, Física para Ciencias e Ingeniería, volumen 1, 2006, Editorial Thomson Paraninfo, 1ª Edición, México.

ESCUELA DE INDUSTRIAL FÍSICA II PÁGINA: 4

DIRECCIONES ELECTRÓNICAS

- 1. http://www.sc.ehu.es/sbweb/fisica/default.htm
- 2. http://teleformacion.edu.aytolacoruna.es/FISICA/document/
- 3. http://colossrv.fcu.um.es/ondas/cursoondas.htm

7. METODOLOGIA

- Exposición de los temas en cada clase, con participación activa de los estudiantes.
- Solución de problemas propuestos por el profesor a los alumnos para su desarrollo en clase.
- Presentación en el aula de experimentos demostrativos y/o videos y/o simulaciones de fenómenos físicos que refuercen los conceptos teóricos vertidos en la clase.
- Realización por los estudiantes de prácticas de laboratorio en relación con los fenómenos físicos tratados en el curso.
- Trabajo de Investigación con exposición por parte de los alumnos cada tres semanas.

EQUIPOS Y MATERIALES

Equipos experimentales de Física, Multimedia, Software de Física, Pizarra

8. CRITERIOS Y PROCEDIMIENTOS DE EVALUACION:

Instrumento	Sigla	Peso
Promedio Prácticas Calificadas	PC	1
Promedio Laboratorio	PL	1
Control de Laboratorio	CL	2
Examen Parcial	EP	1
Examen Final	EF	1
Examen Sustitutorio	ES	1
Nota Final	NF	

- De 04 practicas calificadas, se anula una practica que tenga la menor nota.
- De 10 practicas de laboratorio, se anulan dos con las notas mas bajas de laboratorio.
- Promedios de prácticas calificadas (PC) y laboratorio (PL):

$$PC = \frac{P1 + P2 + P3}{3}$$

$$PL = \frac{L1 + L2 + L3 + L4 + L5 + L6 + L7 + L8 + 2CL1 + 2CL2}{12}$$

La nota del Examen Sustitutorio (ES) reemplaza al Examen Parcial o Final de menor nota.

El Promedio Final (PF) resulta de aplicar la siguiente fórmula:

$$PF = \frac{EP + EF + PC + PL}{4}$$

REQUISITOS PARA LA RENDICIÓN DEL EXAMEN SUSTITUTORIO:

Art. 10º Para que los alumnos puedan rendir el examen sustitutorio, deberán cumplir los siguientes requisitos:

- 1. Haber rendido el examen parcial y/o final.
- 2. Haber alcanzado un promedio no menor de 07,0 en prácticas y/o monografías según el caso que corresponda.
- 3. Si ha rendido el examen parcial y final, haber alcanzado en el curso un promedio ponderado igual o superior a 07,0.

9. REFERENCIAS BIBLIOGRÁFICAS:

- Sears Zemansky Young Freedman, Física Universitaria, Volumen 1, 2004, Editorial Pearson Addison Wesley, Undécima Edición, México, 791 páginas.
- Tipler A. Paúl, Física para la Ciencias y la Tecnología, volumen 1, 2003, Editorial Reverte S.A., Cuarta Adición, México, 716 páginas.
- Serway Raymond A.- Jewett, Física para Ciencias e Ingeniería, volumen 1, 2006, Editorial Thomson Paraninfo, 1ª Edición, México, 1420 páginas.

DIRECCIONES ELECTRÓNICAS:

- http://www.sc.ehu.es/sbweb/fisica/default.htm
- http://teleformacion.edu.aytolacoruna.es/FISICA/document/
- http://colossrv.fcu.um.es/ondas/cursoondas.htm