

Universidad Ricardo Palma

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA INDUSTRIAL DEPARTAMENTO ACADÉMICO DE INGENIERÍA

PLAN DE ESTUDIOS 2006-II

SÍLABO

1. DATOS ADMINISTRATIVOS

Asignatura : ALGORITMOS COMPUTACIONALES

Código:ID 0207Área Académica:SistemasCondición:Obligatorio

Ciclo : II
Créditos : 2
Número de horas por semana : 4 horas
Teoría: 1

Laboratorio: 3

Requisito : EB 0104 Lógica.

Profesores : Ingsº. Ada Cebreros Delgado De la Flor, Oscar Franco del Carpio.

2. SUMILLA.

La asignatura de Algoritmos Computacionales corresponde al 2do. ciclo de la carrera de Ingeniería Industrial. Es un curso desarrollado en forma teórica-práctico, que describe las diferentes estructuras con la finalidad de analizar y diseñar algoritmos y programas computacionales en el ambiente de programación seleccionado. Se describen también las diferentes técnicas y métodos algorítmicos de tratamiento de los datos. Trata los temas: Introducción, Programa y lenguaje de programación, Diseño de Algoritmos, Elementos de algoritmos, Concepto de programación estructurada, introducción de asignación , Subprogramas y parámetros , Estructuras Selectivas y Repetitivas , Arreglos , Depuración , Pruebas , Comprobación , Tratamiento de literales, Búsqueda y Clasificación Interna, Estructura de Datos, Eficiencia de algoritmos.

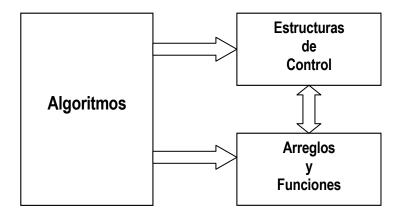
El ingeniero industrial requiere una fuerte preparación en las técnicas modernas de modelación de datos y de programación, ya que las mismas constituyen, conjuntamente, el instrumento más importante que permite a este egresado hacer un uso eficiente y verdaderamente profesional de las computadoras en cualquier actividad de cualquier esfera.

3. OBJETIVOS

COMPETENCIAS DE LA CARRERA

Las competencias de la carrera dentro del perfil del ingeniero industrial donde se relaciona el curso son dos:

- Conduce, gestiona y lidera empresas en marcha con el objeto de generar valor agregado y aportar al desarrollo nacional desde el sector de actividad económica en el que se desempeña, preservando el medio ambiente.(Gestión empresarial).
- Formula, elabora, evalúa e implementa proyectos de mejora de la infraestructura productiva, optimización de los procesos que generan valor, fomentando una cultura de calidad que involucre la participación del personal y la colaboración de los proveedores (Proyectos de mejora)


4. COMPETENCIAS DEL CURSO

- 1. Conoce los conceptos fundamentales para el diseño de algoritmos.
- 2. Identifica, clasifica y aplica los diferentes tipos de datos.
- 3. Declara variables y constantes.
- 4. Utiliza sentencias de asignación: simple y compuesta.
- 5. Utiliza las herramientas del diseño algorítmico: Diagrama de flujo, Pseudocódigo con lógica y rigurosidad.
- 6. Conoce y aplica estructuras: Secuenciales, Condicional, Repetitivas.
- 7. Analiza y diseña algoritmos para la solución de problemas con lógica.
- 8. Diseña y manipula arreglos : unidimensionales y bidimensionales.
- 9. Analiza, aplica y evalúa diferentes métodos con arreglos.
- 10. Utiliza, identifica y manipula funciones y cadenas.
- 11. Identifica y aplica métodos de búsqueda y ordenamiento con eficacia y precisión.

PÁGINA: 1

FACULTAD DE INGENIERÍA PLAN DE ESTUDIOS 2006-II

5. RED DE APRENDIZAJE

6. PROGRAMACIÓN SEMANAL DE LOS CONTENIDOS

UNIDAD DE APRENDIZAJE Nº 1: ALGORITMOS

Logros de la Unidad: Diseña y aplica herramientas de programación con lógica y rigurosidad.

SEMANA	CONTENIDOS	ACTIVIDADES
1	Conceptos básicos: algoritmo, programa, lenguaje de	-Clase expositiva
	programación: Lenguaje de máquina, bajo nivel, alto	-Práctica dirigida N.1
	nivel. Traductores, interpretes y compiladores.	-Entrega de separata
2	Introducción al Lenguaje programación. Herramientas de	-Clase expositiva
	diseño de programación: Pseudocódigo, diagrama de	-Práctica dirigida N.2
	flujo, tipos de datos .	-Asignación de lectura
		-Practicas con enunciados básicos
		-Asesoría
3	Tipos de datos, Identificadores, Palabras reservadas,	-Clase expositiva
	variables y constantes,	-Práctica dirigida N.3
		-Asesoría
		-Primer laboratorio calificado

DESCRIPCIÓN DE LAS TÉCNICAS DIDÁCTICAS: La motivación, exposición y debate grupos. Él dialogo permanente. Explicación, demostración. Creación de grupos para la ejemplificación, ejercitación.

RELACIÓN DE EQUIPOS DE ENSEÑANZA: La pizarra, el proyector y transparencias. La computadora, data display.

RELACIÓN DE LECTURAS:

Separata

REFERENCIAS BIBLIOGRÁFICAS:

- 1. Joyanes Aguilar. Fundamentos de la programación. 1,999. Editorial: Iberoamericana. Número de Paginas: 301.
- 2. Dietel. C# How to Program. 2004. Editorial: Prentice Hall. Número de Paginas: 1568.
- 3. http://es.wikipedia.org/wiki/Algoritmo
- 4. http://lenguajes-de-programacion.com/herramientas-de-programacion.shtml
- 5. http://www.mis-algoritmos.com/ejemplos/diagramas-flujo.html

UNIDAD DE APRENDIZAJE Nº 2: ESTRUCTURAS DE CONTROL

Logros de la unidad: Identifica y aplica las estructuras de control: condicional, selectiva y repetitiva para la solución de problemas con lógica y precisión.

SEMANA	CONTENIDOS	ACTIVIDADES
4	Estructura general de un programa. La estructura de	-Clase expositiva
	programa. Tipos de instrucciones: asignación, entrada /	-Práctica dirigida N.4
	salida, bifurcación y repartición. Elementos básicos:	-Asignación de lectura
	acumuladores. bucles, contadores, interruptores. Cabe-	-Practicas con enunciados básicos
	cera del programa, declaración: constantes y variables,	-Asesoría
	comentarios, estilo de programación	

FACULTAD DE INGENIERÍA PLAN DE ESTUDIOS 2006-II

5	Escribir Estructuras secuenciales. Aplicar las estructuras	-Clase expositiva
	a procesos simples, diagrama de flujo, pseudo código y	-Práctica dirigida N.5
	codificación.	-Asesoría
6	Estructura Condicional if - else. Identificar y aplicar la	-Clase expositiva
	estructura de decisión simple y múltiple. Procesos de	-Práctica dirigida N.6
	condicionamiento múltiple: la estructura switch.	-Asignación de lectura
		-Ejemplos con situaciones reales
		-Asesoría
		-Segundo laboratorio calificado
7	Estructura repetitiva while. Identificar y aplicar la estruc-	-Clase expositiva
	tura repetitiva while.	-Práctica dirigida N.7
		-Asesoría
8	EXAMEN PARCIAL	
9	Estructura repetitiva: Do-While.	-Clase expositiva
		-Práctica dirigida N.8
		-Asignacion de lectura
		-Asesoría
		-Tercer laboratorio calificado
		-Entrega del formato del proyecto de investigación.
10	Estructura repetitiva: for. Aplicación de las funciones	-Clase expositiva
	ramdom, para la generación de números aleatorios	-Practica dirigida N.9
		-Asesoría
		-Entrega del primer avance del proyecto de investi-
		gación.

DESCRIPCIÓN DE LAS TÉCNICAS DIDÁCTICAS La exposición con visualización física de los componentes para contrastar, discusión grupal. Trabajo de Investigación.

RELACIÓN DE EQUIPOS DE ENSEÑANZA: El computador, el data display. Los elementos mostrados en clase.(Tarjeta madre, memorias, etc)

RELACIÓN DE LECTURAS:

Separata

REFERENCIAS BIBLIOGRÁFICAS:

- 1. Dietel. C# How to Program. 2004. Editorial: Prentice Hall. Número de Paginas: 1568.
- 2. http://laurel.datsi.fi.upm.es/~rpons/personal/trabajos/curso_c/node63.html
- 3. http://ar.geocities.com/luis_pirir/cursos/cap2.htm
- 4. http://luda.uam.mx/curso1/Introduccion%20a%20la%20Programacion/estructuras%20de%20control.htm
- 5. http://ib.cnea.gov.ar/~icom/CursoC/controlflujo.shtml

UNIDAD DE APRENDIZAJE Nº 3: ARREGLOS Y FUNCIONES

Logro de la Unidad: Diseña y manipula arreglos, funciones y cadenas. Identifica y aplica métodos de búsqueda y ordenamiento con eficacia y precisión.

SEMANA	CONTENIDOS	ACTIVIDADES
11	Arreglo unidimensionales, aplicación de ordenamientos.	-Clase expositiva
	Procesos de búsqueda. Declaración del arreglo, aplica-	-Práctica dirigida N.10
	ciones.	-Asignación de lectura
		-Discusión de diferentes métodos
		-Asesoría
		-Cuarto laboratorio calificado
12	Arreglos Bidimensionales. Implementar y manipular	-Clase expositiva
	arreglos.	-Práctica dirigida N.11
		-Asesoría
		-Entrega del segundo avance del proyecto de investi-
		gación.
13	Programación modular. Funciones: concepto, declara-	-Clase expositiva
	ción, definición, llamada a una función. Aplicaciones.	-Práctica dirigida N.12
		-Asignación de lectura
		-Asesoría
14	Cadenas: Concepto, declaración y acceso. Manipulación:	-Clase expositiva

	acceso, lecturas, funciones.	-Práctica dirigida N.13
		-Asesoría
15	Tratamiento de literales. Búsqueda binaria y clasificación	-Clase expositiva
	interna.	-Práctica dirigida N.14
		-Asesoría
		-Presentación y sustentación del Proyecto de investi-
		gación.
16	EXAMEN FINAL	
17	EXAMEN SUSTITUTORIO	

DESCRIPCIÓN DE LAS TÉCNICAS DIDÁCTICAS La exposición y lectura comentada, La discusión grupal.

RELACIÓN DE LECTURAS:

Separatas.

REFERENCIAS BIBLIOGRÁFICAS:

- 1. Francia, Dario Rafael . Visual C#.NET. 2003. Editorial: Macro. Número de Páginas: 302
- 2. Ceballos, Francisco Javier. El Lenguaje de Programación C#. 2003. Editorial: Alfa Omega.Número de Páginas: 302.
- 3. http://c.conclase.net. Método de Ordenación. Burbuja
- 4. http://mictlan.utm.mx/arreglos.html
- 5. http://sistemas.itlp.edu.mx/tutoriales/estru1/12.htm
- 6. http://computacion.itam.mx/AyPMA/Arr2D.pdf
- 7. http://www.itver.edu.mx/comunidad/material/algoritmos/U4-42.htm

METODOLOGÍA

La metodología de curso esta orientada a promover la participación activa y así favorecer el aprendizaje del alumno. Se utilizará el computador como herramienta básica para la demostración y ejemplificación.

El profesor tendrá a su cargo la exposición de los diferentes temas del curso y además se complementará con la intervención de los alumnos. Se formaran grupos de discusión y debates dirigidos. Se motivará a los alumnos para la utilización de Internet, correo electrónico, etc.

8. CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN DEL APRENDIZAJE Criterios:

- Intervenciones en Clase.
- Asistencia Obligatoria.
- Puntualidad.
- Nivel de conocimiento y/o aprendizaje
- Nivel de aprendizaje en el laboratorio
- Exposiciones.
- Interés y motivación por el curso

Instrumentos:

Laboratorios Calificados : LC (Un Laboratorio Calificado: Proyecto de Investigación)

Examen Parcial : EP LC = (LC1+LC2+LC3)/3

Examen Final : EF (Se elimina el menor de los 4 LC, tienen peso 1)

Examen Sustitutorio : ES: reemplaza a EP o EF.

Promedio Final : PF

La nota final será la resultante de la siguiente fórmula:

$$PF = \frac{LC + EP + EF}{3}$$

9. REFERENCIAS BIBLIOGRÁFICAS:

- Dietel. C# How to Program. 2004. Editorial: Prentice Hall. Número de Paginas: 1568.
- 2. A., Hopcroft J., Ullman J. "Estructuras de Datos y Algoritmos"; Addison-Wesley 1988, Wilmington-Delaware EUA.
- 3. Hernandez, R.; Lazaro, J.C.; Dormido, R.; Ros, S. "Estructura de Datos y Algoritmos"; Prentice Hall 2001, Madrid España.
- 4. Brassard, G. Bratley, P. "Fundamentos de Algoritmia", Prentice Hall 1998 Madrid.
- 5. Ceballos, Francisco Javier. El Lenguaje de Programación C#. 2003. Editorial: Alfa Omega.
- 6. Joyanes Aguilar. Fundamentos de la programación. 1,999. Editorial: Iberoamericana.
- 7. http://www.mailxmail.com/curso/informatica/programacionestructurada/capitulo21.htm
- 8. http://es.wikipedia.org/wiki/Ordenamiento_de_burbuja.
- 9. http://es.wikibooks.org/wiki/C_sharp_NET_/_Cap%C3%ADtulo_2.