DAD RICARDO PALMA MCMLXIX PERU

UNIVERSIDAD RICARDO PALMA FACULTAD DE INGENIERÍA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA ELECTRONICA

SILABO

PLAN DE ESTUDIOS 2006-II

I. DATOS GENERALES

Nombre del curso : TEORIA DE REDES

Código: CE 0605Área académica: CircuitosCondición: Obligatorio

Nivel : VI Créditos : 04

Número de horas semanales :T(02); P(02); L (02)

Requisito : Circuitos Eléctricos II, IE 0505

Semestre : 2009-I

Profesor : Ing. Eduardo Ale Estrada

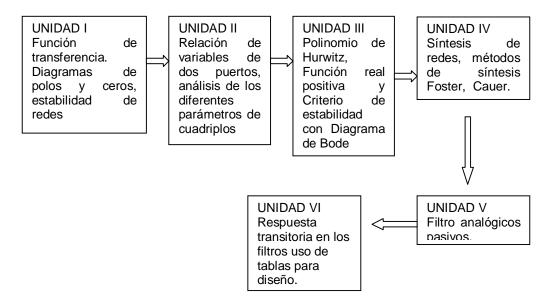
II. SUMILLA

Tiene como fin final brindar al estudiante los criterios del análisis de Funciones de Transferencia. Métodos operacionales en el análisis de circuitos. Diagramas de Amplitud y Fase. Criterios de estabilidad. Síntesis de circuitos R,L,C. Funciones de Transferencia y Síntesis de Redes. Filtros y sus características. Tipos de filtros: Butterworth, Chevyshev, Legendre, Bessel, Gaussiano. Análisis comparativo de filtros. Características de los filtros en el dominio del tiempo. Respuesta transitoria. Uso de tablas de diseño de filtros.

III. ASPECTOS DEL PERFIL PROFESIONAL QUE APOYA LA ASIGNATURA

- 1. Analiza, diseña, especifica, modela y prueba circuitos analogicos pasivos con criterio para el uso comercial e industrial.
- 2. Evalúa, planifica, diseña, integra, prueba, opera y mantiene redes de circuitos pasivos para ser aplicado a las redes de Telecomunicaciones y/o de automatización en el marco del desarrollo sostenible
- 3. Realiza proyectos de investigación y desarrollo tecnológico formando parte de equipos multidisciplinarios.
- 4. Gestiona y dirige estudios, proyectos de base tecnológica administrando recursos humanos, tecnológicos y materiales.
- 5. Desarrolla estrategias de autoaprendizaje y actualización para asimilar los cambios y avances de la profesión

IV. COMPETENCIA DE LA CARRERA


El curso de Teoría de Redes aporta el logro de las siguientes competencias de la carrera:

- Realiza el analisis matematico de la estabilidad, reciprocidad, causualidad, factibilidad
- 2. Realiza el análisis y síntesis de Circuitos Pasivos R, L, C.
- 3. Conoce y utiliza los principales tipos de modelos matematicos y graficos para el diseño de circuitos con estabilidad.
- 4. Toma conocimiento de los principales métodos de Diseño de los circuitos pasivos en modelos de filtros pasivos.

IV COMPETENCIAS DEL CURSO

- 1. Analizar y explicar los procedimientos matemáticos y prácticos de formulación y solución de la estabilidad de redes eléctricas pasivas.
- 2. Analizar, explicar y evaluar síntesis de filtros pasivos utilizando los métodos correspondientes.
- 3. Analizar y diseñar filtros pasivos utilizando los procedimientos matemáticos y software de aplicación.
- 4. Determinar y explicar el comportamiento transitorio de filtros pasivos.

V RED DE APRENDIZAJE

VI UNIDADES DE APRENDIZAJE

UNIDAD I: FUNCIONES DE TRANSFERENCIA

Logros de la unidad: Conocer la fundamentación matemática para lograr que los sistemas logren la estabilidad y para eso se utiliza los métodos matemáticos que se detallan en los contenidos, además de utilizar herramientas de software como el matlab.

SEMANA	CONTENIDOS	ACTIVIDADES
01	Ecuación característica y Funciones de transferencia. Funciones de redes de uno y dos puertos	los instrumentos del
02	Cálculo de las funciones de red. Polos y ceros. Comportamiento en el dominio del tiempo a partir de la grafica de polos y ceros. Estabilidad de redes	de matlab en la aplicación de la teoría.

LECTURAS		
SELECTAS TECNICAS DIDACTICAS A EMPLEAR	 Analisis Analisis de casos Demostracion Descripcion Ejemplificacion 	
EQUIPOS Y MATERIALES	 Ejercitacion Computadoras Proyector multimedia Pizarra Separatas del curso. Ejemplos de aplicación. Problemas propuestos 	
REFERENCIAS BIBLIOGRAFICAS	M.E. VAN VALKENBURG, Análisis de Redes, 2da Edic., 1998 Franklin F. Kuo, Network Analysis and Synthesis. SKILLING HUGH, Redes Eléctricas	
DIRECCIONES ELECTRONICAS	 es.wikipedia.org/wiki/Función_de_transferencia www.lfcia.org/~cipenedo/cursos/scx/Tema4/nodo4- 2-1.html www.fi.uba.ar/materias/6722/matlabclase1.pdf 	

UNIDAD II: PARÁMETROS

Logros de la unidad: Analiza los tipos de cuadripolos que son necesarios a ser utilizados en un sistema de transferencia y para eso se evalúa las formulas los parámetros de estos sistemas de dos puertos.

SEMANA	CONTENIDOS		ACTIVIDADES		
03	Relación de las variables de 2			Análisis de ejemplos.	
	puertos.	Parámetros	de	Simulación	por

admitancia en cortocirco	uito. computadora
Parámetros de impedancia	en Experimento de laboratorio
circuito abierto. Paráme	tros
de transmisión, Híbrio	dos.
Conexión en paralelo	de
redes de dos puertos.	

LECTURAS		
SELECTAS		
TECNICAS	Analisis	
DIDACTICAS A	 Analisis de casos 	
EMPLEAR	 Demostracion 	
	 Descripcion 	
	Ejemplificacion	
	Ejercitacion	
EQUIPOS Y	 Computadoras 	
MATERIALES	 Proyector multimedia 	
	Pizarra	
	 Separatas del curso. 	
	 Ejemplos de aplicación. 	
	 Problemas propuestos 	
REFERENCIAS	M.E. VAN VALKENBURG, Análisis de Redes, 2da	
BIBLIOGRAFICAS	Edic., 1998	
	 Franklin F. Kuo, Network Analysis and Synthesis. 	
	SKILLING HUGH, Redes Eléctricas	
DIRECCIONES	www.tsc.uvigo.es/DAF/Investigacion/PDFs/transp-	
ELECTRONICAS	5.pdf - <u>Páginas similares</u>	
	www.dat.etsit.upm.es/~felix/descarga/adct.pdf	
	es.wikipedia.org/wiki/Cuadripolo	

UNIDAD III DIAGRAMA DE BODE, ESTABILIDAD, CAUSALIDAD

Logros de la unidad: Analizar, evaluar por métodos matemáticos así como también se simula por computadora utilizando el software matlab en la realización de las graficas de magnitud y fase de Bode así como sus valores.

SEMANA	CONTENIDOS	ACTIVIDADES
04	Gráficas de magnitud y fase.	Análisis de ejemplos.
	Lugares geométricos	
	complejos. Gráficas a partir de	
	fasores en el plano S.	Experimento de laboratorio
	Diagrama de Bode. Criterio de	
	Nyquist.de redes de dos	
	puertos.	
05	Elementos de la teoría de	
	estabilidad. Causalidad.	Simulación por
	Polinomio de Hurwitz.	computadora

Propiedades.	Procedimiento	Experimento de laboratorio
de prueba		

LECTURAS		
SELECTAS		
TECNICAS	 Analisis 	
DIDACTICAS A	 Analisis de casos 	
EMPLEAR	 Demostracion 	
	 Descripcion 	
	Ejemplificacion	
	 Ejercitacion 	
EQUIPOS Y	 Computadoras 	
MATERIALES	 Proyector multimedia 	
	Pizarra	
	 Separatas del curso. 	
	Ejemplos de aplicación.	
	 Problemas propuestos 	
REFERENCIAS	M.E. VAN VALKENBURG, Análisis de Redes, 2da	
BIBLIOGRAFICAS		
	Franklin F. Kuo, Network Analysis and Synthesis.	
	SKILLING HUGH, Redes Eléctricas	
DIRECCIONES	• www.ugr.es/~jmolinos/files/elaboraciondediagrama	
ELECTRONICAS	sde bode .pdf	
	www.fi.uba.ar/materias/6722/bode.pdf	
	html.rincondelvago.com/circuitos_10.html	

UNIDAD IV: SINTESIS DE CIRCUITOS

Logros de la unidad: Analizar, evaluar los métodos canónicos para sintetizar circuitos pasivos (R, L, C) se utiliza además los métodos matemáticos anteriormente demostrados en las otras unidades para su diseño.

SEMANA	CONTENIDOS	ACTIVIDADES
06	Funciones reales positivas.	
	Método de prueba. Síntesis	Simulación por
	de circuitos RC-RL-LC-RLC.	
	Formas de Foster, Cahuer	Experimento de laboratorio
07	Propiedades de las funciones	Análisis de ejemplos.
	de impedancia RC y	Simulación por
	admitancia RL. Síntesis de	
	impedancia RC y admitancia	Experimento de laboratorio
	RL. Síntesis de ciertas	
	funciones RLC	
08	EXAMEN PARCIAL	
09	Función de transferencia de	Análisis de ejemplos.
	redes de dos puertos. Ceros	Simulación por
	de transmisión. Funciones de	computadora
	mínima fase. Síntesis de	Experimento de laboratorio

	npedancia de transferencia
CC	on terminación de un Ohmio.
Sí	íntesis de redes de
re	esistencia constante.

LECTURAS SELECTAS		
TECNICAS DIDACTICAS A EMPLEAR	 Analisis Analisis de casos Demostracion Descripcion Ejemplificacion Ejercitacion 	
EQUIPOS Y MATERIALES	 Computadoras Proyector multimedia Pizarra Separatas del curso. Ejemplos de aplicación. Problemas propuestos 	
REFERENCIAS BIBLIOGRAFICAS	 M.E. VAN VALKENBURG, Análisis de Redes, 2da Edic., 1998 Franklin F. Kuo, Network Analysis and Synthesis. SKILLING HUGH, Redes Eléctricas Tuttle. Redes eléctricas: análisis y síntesis. Nicasio, O. Teorías de Redes. Universitas. 1999 	
DIRECCIONES ELECTRONICAS	 www.imse.cnm.es/~elec_esi/asignat/ASC/pdf/prog ASC0607es.pdf www.uvigo.es/estudios/titulacions/centros/et_tel_vi g/es_teleco/estudios/materias/segundo/213.pdf www.tecnun.es/tecnunonline/areas/teleco.htm 	

UNIDAD V: FILTROS

Logros de la unidad: Analiza, evalúa, y se diseña utilizando algoritmos matemáticos para las aproximaciones de filtros pasivos, se utiliza el matlab para su comprobación y graficas.

SEMANA	CONTENIDOS	ACTIVIDADES
10	Introducción a los filtros.	Análisis de ejemplos.
	Clasificación según la forma	Simulación por
	de respuesta. Clasificación	computadora
	según los elementos que lo	Experimento de laboratorio
	conforman. Banda de	
	respuesta de los filtros en el	
	dominio de la frecuencia.	

	Respuesta de amplitud, fase y retardo.	
11	Aproximación para filtro Pasa Bajo. Filtro tipo Butterworth. Normalización de frecuencia y de impedancia. Uso del Mathlab	Simulación por computadora
12	Filtro tipo Chevyshev. Filtro tipo Legendre. Uso del Mathlab para gráficas de respuestas. Filtro tipo Besel. Filtro Gaussiano. Análisis comparativo de filtros	Simulación por computadora Experimento de laboratorio
13	Características de los filtros en el dominio del tiempo. Respuesta transitoria. Relación entre el dominio de la frecuencia y el dominio del tiempo. Tipos de funciones. Respuesta al Impulso de un Filtro Gaussiano. Determinación de residuos	Simulación por computadora

LECTURAS			
SELECTAS			
TECNICAS	A a li i		
	Analisis		
DIDACTICAS A	Analisis de casos		
EMPLEAR	Demostracion		
	 Descripcion 		
	Ejemplificacion		
	Ejercitacion		
EQUIPOS Y	 Computadoras 		
MATERIALES	Proyector multimedia		
	Pizarra		
	 Separatas del curso. 		
	 Ejemplos de aplicación. 		
	Problemas propuestos		
REFERENCIAS			
BIBLIOGRAFICAS	Edic., 1998		
DIDLIGGITAL IGAG	·		
	Franklin F. Kuo, Network Analysis and Synthesis.		
	SKILLING HUGH, Redes Eléctricas		
	• Monsberger, W. Teoría Moderna de Filtros con		
	Mathlab. Ed. Universitas. Córdoba. 1999.		
DIRECCIONES	 www.terra.es/personal2/equipos2/filtros.htm 		
ELECTRONICAS	www.cienciasmisticas.com.ar/electronica/rlc/filtros/inde		
	x.php		
	www.electronicafacil.net/tutoriales/tutorial105.html		

UNIDAD VI : RESPUESTA TRANSITORIA Y USO DE TABLAS

Logros de la unidad: Analizar la fundamentación matemática para lograr que los filtro respondan sus transitorios y analiza los retardos así como sus graficas utilizando el software matlab

SEMANA	CONTENIDOS	ACTIVIDADES
14	Teoría de la Estimación.	Análisis de ejemplos.
	Respuesta transitoria en filtros	Simulación por
	pasa alto y pasa banda	
	Carreras de respuesta	Experimento de laboratorio
	transitoria. Curvas.	
15	Respuesta transitoria en filtros	Análisis de ejemplos.
	pasabanda de Banda	Simulación por
	Angosta. Respuesta	computadora
	transitoria y retardo de grupo	Experimento de laboratorio
16	Utilización de Tablas para	Análisis de ejemplos.
	diseño de filtros. Filtros de	Simulación por
	cristal. Filtros helicoidales	computadora
		Experimento de laboratorio

LECTURAS SELECTAS		
TECNICAS DIDACTICAS A EMPLEAR	 Analisis Analisis de casos Demostracion Descripcion Ejemplificacion Ejercitacion 	
EQUIPOS Y MATERIALES	 Computadoras Proyector multimedia Pizarra Separatas del curso. Ejemplos de aplicación. Problemas propuestos 	
REFERENCIAS BIBLIOGRAFICAS	M.E. VAN VALKENBURG, Análisis de Redes, 2da	
DIRECCIONES ELECTRONICAS	 www.dma.fi.upm.es/ctorres/curso-interactivo-control/cap5.pdf www.ing.uc.edu.ve/aulavirtual/mod/resource/view.php?id=2879 www.fi.uba.ar/materias/6722/respTransitoria.pdf 	

RELACION DE LECTURAS

SEMANA	CONTENIDOS	ACTIVIDADES
17		EXAMEN FINAL
18		EXAMEN SUSTIRUTORIO

VII METODOLOGIA

- Clases teóricas: Se desarrollan mediante exposición del profesor cumpliendo el calendario establecido. En estas clases se estimula la participación activa del estudiante, mediante preguntas, solución de problemas, discusión de casos, búsqueda de información bibliográfica y por Internet. Se utilizará metodología activa para reforzar el aprendizaje del alumno.
- Clases prácticas: Se desarrollan con la finalidad de desarrollar las habilidades y actitudes descritas en las competencias. Se plantean ejercicios y casos a ser resueltos con los conocimientos adquiridos en las clases teóricas.
- 3. Clases de laboratorio: En el laboratorio se realizarán las pruebas experimentales de los temas utilizando el software correspondiente y en algunos casos con guías de laboratorio.

Los equipos como computador y proyector multimedia y los materiales como el texto, separatas, software y el aula virtual permitirán la mejor comprensión de los temas tratados.

VIII EVALUACION

El sistema de evaluación es permanente. Comprende evaluaciones de los conocimientos, habilidades y actitudes.

Para evaluar los conocimientos se utilizan las prácticas calificadas y exámenes. Para evaluar las habilidades se utilizan adicionalmente a las anteriores las intervenciones orales y escritos, exposiciones y el trabajo de laboratorio.

Para evaluar las actitudes, se utiliza la observación del alumno, su comportamiento, responsabilidad, respeto, iniciativa y relaciones con el profesor y alumnos.

Los instrumentos de evaluación del curso son:

- 1. Prácticas calificadas (P) : Son cuatro, se elimina la de menor nota.
- 2. Trabajos de laboratorio (L): Son seis, no se elimina ninguna.
- 3. Exámenes (E): Son tres, examen parcial (EP), examen final (EF) y examen sustitutorio (ES), si en caso no alcanzara el puntaje aprobatorio y solamente reemplazara al EP o EF.

La nota final se obtiene mediante la siguiente formula :

NF ={
$$[((P1+P2+P3+P4)/3)+((L1+L2+L3+L4+L5+L6)/6)]/2 + EP+EF }/3$$

La redacción, orden y ortografía influyen en la calificación de las pruebas escritas.

En la calificación de los trabajos de laboratorio se tiene en cuenta la puntualidad, las exposiciones de los trabajos, intervenciones orales, comportamiento, responsabilidad e iniciativa.

IX REFERENCIAS BIBLIOGRAFICAS

Van Valkenbourg. Análisis de Redes. Prentice Hall.

Franklin F. Kuo, Network Analysis and Synthesis

Everitt y Anner. Ingeniería de comunicaciones. Arbó.

Cassell, W. Linear Electric Circuits.

Van Valkenbourg. Introduction to Modern Network Synthesis.

Tuttle. Redes eléctricas: análisis y síntesis. 1998

Nicasio, O. Teorías de Redes. Universitas. 1999.

Dorf. *Circuitos Eléctricos*. 2da Ed. Alfaomega 1995.

Monsberger, W. Teoría Moderna de Filtros con Mathlab. Ed. Universitas. Córdoba. 1999.