

Facultad de Ingeniería

Escuela Profesional de Ingeniería Informática

SÍLABO 2023-2

I. DATOS ADMINISTRATIVOS

1. Asignatura : MATEMÁTICA DISCRETA

2. Código : IF0402

3. Naturaleza : Teórico, Práctico, Laboratorio

4. Condición : Obligatorio

5. Requisitos : IF0302 Taller de Programación I

6. N° Créditos : 03.5

7. N° de horas : Teoría: 2, Laboratorio: 3

8. Semestre Académico : 2023 - 2

9. Docente : César Augusto, Avila Celis

Guillermo Antonio, Mas Azahuanche

10. Correo Institucional : César Avila Celis <u>cesar.avila@urp.edu.pe</u>

Mas A. Guillermo" guillermo.mas@urp.edu.pe

II. SUMILLA

Tiene como propósito desarrollar en el estudiante una base de conocimientos de matemática discreta, la cual le permita manejar la información y encontrar más eficientemente la solución a los problemas que han de resolverse mediante programas de computadora. El contenido de la asignatura está dividido en: (1) Teoría de Números, aritmética entera y modular. (2) Matriz, operaciones básicas y propiedades, matriz booleana. (3) Circuitos Combinatorios. (4) Recurrencia homogénea y no homogénea, funciones de estabilidad. (5) Relaciones, dígrafos, grafos. Árboles, Grupo, Semi-grupo. (6) Maquinas de Estado Finito. (7) Proyecto de Aplicación.

III. COMPETENCIAS GENÉRICAS A LAS QUE CONTRIBUYE LA ASIGNATURA

- Autoaprendizaje usamos la Conectividad usando el aula virtual y la web junto con softwares confiables y
 eficientes para el cálculo y comprobación de ejercicios y/o problemas del curso.
- Comportamiento ético, se cultiva la ética poniendo autores en la bibliografía en los trabajos de investigación.

IV. COMPETENCIAS ESPECÍFICAS A LAS QUE CONTRIBUYE LA ASIGNATURA

- La Matemática Discreta es el Modelo matemático de la Ingeniería Informática y de la Ingeniería de Sistemas por ejemplo la Teoría de Números contribuye a la Seguridad de Software usando la Criptografía.
- La Recurrencia contribuye a la Programación.
- Los Grafos y Árboles contribuye a la Base de Datos y en Redes.
- Los Grupos, Semigrupos, Lenguajes y Máquinas de Estado Finito se usan en Modelos de Inteligencia Artificial.

V. DESARROLLA EL COMPONENTE DE: INVESTIGACIÓN (X1) RESPONSABILIDAD SOCIAL (X2)

VI. LOGRO DE LA ASIGNATURA

Al finalizar la asignatura, el estudiante utiliza los conceptos básicos de matemática discreta y desarrollar una base de conocimientos de estructuras matemáticas que permita al alumno entender mejor el manejo de la información y enfrentarlos cambios continuos en la informática, trabajar con la abstracción, teoríadenúmeros, recurrencia, algebra de Boole, grafos, reticulados, Arbolesy Maquinas de Estado Finito.

VII. PROGRAMACIÓN DE CONTENIDOS

UNIDAD I: TEORIA DE NUMEROS. ARITMÉTICA ENTERA Y MODULAR

LOGRO DE APRENDIZAJE:

• Define máximo común divisor, demuestra congruencias y aplica los teoremas de Fermat, Euler y el Teorema Chino y los aplica en la teoría de Números con rigurosidad y precisión.

•	Aplica algoritmos, interpreta los resultados, analiza y sintetiza los resultados computacionales. Usa el
	software ArTeM en Teoría de Números.

Semana	Contenido			
1	Aritmética entera: Números primos Teorema Fundamental de la Aritmética, Divisibilidad. MCD.			
	Algoritmo de Euclides. Aplicaciones usando ArtEM Aplicaciones			
2	Aritmética Modular: Congruencias, propiedades. Ecuaciones Diofánticas. Teoremas de Fermat, Euler y Teorema Chino. Revisión de Criptografía con ArtEM.			

UNIDAD II: MATRIZ, OPERACIONES BASICAS Y PROPIEDADES, MATRIZ BOOLEANA.

LOGRO DE APRENDIZAJE:

- Define y opera matrices (numéricas y booleanas).
- Algebra de Boole (propiedades lógicas y conjuntistas)

Semana	Contenido				
3	Matrices Numéricas. Propiedades. Operaciones. Matrices booleanas. Operaciones. Álgebra de				
	Boole. Propiedades.				
	Propiedades. Relaciones transitivas. Representación de relaciones como matrices booleanas. Aplicaciones.				

UNIDAD III: CIRCUITOS COMBINATORIOS

LOGRO DE APRENDIZAJE:

- Define y opera circuitos combinatorios, Define, sintetiza circuitos combinatorios usando Mapas de Karnaugh y aplica en problemas y/o ejercicios de aplicación
- Aplica algoritmos, interpreta los resultados, analiza y simplifica los circuitos combinatorios.

Semana	Contenido			
4	Circuitos Combinatorios. Funciones Booleanas y usa mapa de Karnaugh. Relaciones. Evaluación del			
	Logro. Primera Practica Calificada			

UNIDAD IV: RECURRENCIA HOMOGENEA Y NO HOMOGENEA. ESTABILIDAD DE UN SISTEMA

LOGRO DE APRENDIZAJE:

- Resuelve ejercicios de recurrencia homogénea y no homogénea y analiza la estabilidad de un sistema.
- Aplica algoritmos, interpreta los resultados, analiza y sintetiza los resultados computacionales.

Semana	Contenido	
5	Sucesiones y Ecuaciones en diferencias: Recurrenci Aplicaciones.	a lineal homogénea y no homogénea.
6	Método de la función generatriz. Función de Estabi	lidad. Aplicaciones

UNIDAD V: RELACIONES, DÍGRAFOS y GRAFOS. ARBOLES. GRUPO, SEMI-GRUPO

LOGRO DE APRENDIZAJE:

- Define, utiliza y clasifica grafos de Euler y Hamilton y aplica en Segmentación de programas en ciencias de la computación con rigurosidad y precisión
- Aplica algoritmos, interpreta los resultados, analiza y simplifica grafos y dígrafos.
- Define, aplica orden parcial y reticulados en procesamiento de la información y jerarquización con rigurosidad y precisión.
- Resuelve ejercicios y/o problemas de computación usando las propiedades y conceptos delorden parcial y retículas
- Define, opera y aplica árboles en estructuras de datos, en la teoría de codificación con rigurosidad y precisión

- Resuelve ejercicios y/o problemas de computación usando las propiedades y conceptos de árboles.
 Diseña gráficos rotulados usando algoritmos de expansión mínima.
- Define y demuestra teoremas de grupos y aplica en problemas de la clasificación de redes y en la optimización de máquinas de estados finitos con rigurosidad y precisión.

Seman	Contenido				
а					
7	Algoritmo de Warshall. Grafos. Operaciones entre grafos. Grafos de Euler: Circuitos y trayectorias. Aplicaciones				
8	Grafos de Hamilton: Circuitos y trayectorias. Evaluación del Logro. Segunda Practica Calificada.				
9	Conjuntos parcialmente ordenados. Orden Total. Ordenamiento Topológico. Orden Lexicográfico. Extremos. Elementos Maximales y minimales. Retículas. Propiedades. Retículas de Boole. Retículas Isomorfas. Aplicaciones				
10	Árboles. Propiedades. Sub-árboles. Árboles Binarios (clasificación). Árboles de Jerarquización. Árboles etiquetados. Recorrido de un árbol. Aplicaciones.				
11	Notación polaca. Búsqueda. Conversión de un árbol general en un árbol binario. Árboles no dirigidos. Árboles de expansión mínima. Aplicaciones.				
12	Algoritmo de Prim y Kruskal Arborescencia. Isomorfismos de árboles. Evaluación del Logro. Tercera Practica Calificada				
13	Semigrupos. Teoremas. Homomorfismos. Isomorfis Grupos. Teoremas. Homomorfismos. Isomorfismos				

UNIDAD VI: MÁQUINAS DE ESTADO FINITO

• LOGRO DE APRENDIZAJE: Resuelve ejercicios y/o problemas de computación usando las propiedades y conceptos máquinas de estados finitos con rigurosidad y precisión. Gráfica una Máquina de Estado Finito y evalúa la salida para una cadena de entrada en forma recurrente. Identifica Maquinas equivalentes y las reduce.

Semana	Contenido				
14	Máquinas de Estado finito. Cadenas de entrada. Cintas de Salida. Graficas. Aplicaciones				
15	Maquinas equivalentes. Simplificación de máquinas. Autómata finito. Aplicaciones.				
16	Monitoreo y Retroalimentación.				
	Evaluación del Logro				
	Cuarta Practica Calificada				
17	EVALUACIÓN SUSTITUTORIA				

VIII. ESTRATEGIAS DIDÁCTICAS

Aprendizaje Basado en Proyectos, Aprendizaje Colaborativo, Aprendizaje basado resolución de problemas.

IX. EVALUACIÓN

Actividades de aprendizaje: Se considerarán las siguientes actividades de aprendizaje: guías de laboratorio, Práctica Calificada y clases presenciales (con participación de los alumnos)

Evidencias de aprendizaje:

Práctica Calificada: Actividad presencial, donde los estudiantes resuelven de forma individual una prueba (examen) sobre los temas estudiados en la Unidad, que constan de 5 ejercicios con una duración de 100 minutos. Clase presencial: Actividad donde el docente desarrolla un tema de la unidad y resuelve ejercicios del tema estudiado, con participación constante de los estudiantes considerando así la nota de participación de cada estudiante.

Guías de laboratorio (entregables): Son problemas propuestos para desarrollar, usando software o aplicaciones o programas respectivos durante la sesión de practica-laboratorio.

UNIDAD	TIPOS DE EVALUACIÓN	PESOS
I	Práctica Teórica, Practica Laboratorio y Participación	0.8,0.8,0.2
II	Práctica Teórica, Practica Laboratorio y Participación	0.8,0.8,0.2
	Examen Parcial	
III	Práctica Teórica, Practica Laboratorio y Participación	0.8,0.8,0.2
IV	Práctica Teórica, Practica Laboratorio y Participación	0.8,0.8,0.2
	Examen Final	

PROMEDIO PRACTICA TEORICA (PRTi): La asignatura comprende **CUATRO UNIDADES**, en cada una de ellas se considera UNA PARTICIPACION (PAi) oral o escrita teórica con peso 20% y una PRUEBA ESCRITA (PEi). Para obtener las **PRTi**, correspondientes a cada UNIDAD, usamos la formulas: PRTi = 0.2 * PAi + 0.8 * PEi

PROMEDIO PRACTICA LABORATORIO (LABi): La asignatura comprende CUATRO UNIDADES, en cada una de ellas se considera UNA PARTICIPACION (PAi) mediante un producto entregable con peso 20% y una PRUEBA LABORATORIO (PLi). Para obtener LABi, correspondientes a cada UNIDAD, usamos la formulas: LABi = 0.2 * PAi + 0.8 * PLi EVALUACIÓN CONTÍNUA (EC): Comprende la PARTICIPACIÓN(PA) del alumno en clase teórica con un peso del 20 % del PRT y similarmente se considera la Participación en horas Practica-Laboratorio mediante la resolución de una guía de problemas, entregables al final de cada clase, con peso del 20% del LAB.

PRÁCTICA-LABORATORIO (LAB): Es una Evaluación presencial por cada Unidad Académica, la práctica-laboratorio calificada consta de 6 preguntas tipo ensayo se resuelven usando conocimiento teórico y/o softwares aplicativos, de forma individual. Esta prueba tiene una duración de 120 minutos, el peso de esta evaluación es de 80% del LAB. **EXAMEN PARCIAL (EP)**: Se tomará una evaluación en la semana 8, de 5 preguntas teóricas (preguntas abiertas-tipo ensayo), de forma individual. El EP tiene un peso de la tercera parte de la **NOTA FINAL(NF)**.

EXAMEN FINAL (EF): Se tomará una evaluación en la semana 16, de 5 preguntas (preguntas abiertas-tipo ensayo), de forma individual. El EF tiene un peso de la tercera parte de la **NOTA FINAL(NF)**.

EXAMEN SUSTITUTORIOL (ES): En caso que se obtenga una nota desaprobada en examen parcial o examen final, se tomará una Examen Sustitutorio en la semana 17, el cual consta de cinco preguntas (abiertas-tipo ensayo) y reemplaza a la menor nota desaprobada.

Para obtener la NOTA FINAL (NF) de la asignatura, usamos la formulas:

$$PRTi = 0.2PA + 0.8PRTC, i = 1, 2, 3, 4, y \ LABi = 0.2PA + 0.8LABC, i = 1, 2, 3, 4$$

$$NF = \frac{EP + EF + \left(\frac{\left(LAB1 + LAB2 + LAB3 + LAB4\right)/3 + PRT1 + PRT2 + PRT3 + PRT4}{4}\right) + ES}{2}$$

La nota aprobatoria de la asignatura es once (11).

X. RECURSOS

- Equipos: computadora, laptop, Tablet, celular, pizarra, tiza, plumón.
- Materiales: apuntes de clase del Docente, separatas de problemas, lecturas, videos.
- Plataformas: Flipgrid, Simulaciones PhET, Kahoot, Thatquiz, Geogebra.

XI. REFERENCIAS

Bibliografía Básica

AUTOR	TITULO	Año	Lugar	Editorial	Nº pág.
Jean Paul	Matemáticas	1996	México	CECSA	597
Tremblay— Ram	Discretas Con				
Manohar.	aplicación a las				
	ciencias de la				
	Computación				
Ralp P. Grimaldi	"Matemática	2001	México	ADDISON – WESLEY	874
	Discreta y			IBEROAMERICA	
	Combinatoria"				
Edgard R.	"Mathematica	2001	México	Thomson Learning.	657
Scheinerman	Discreta"			1ra ed.	
C.L. LIU	Elementos de	2001.	México	MC GRAW HILL	430

Universidad Ricardo Palma Rectorado

Oficina de Desarrollo Académico, Calidad y Acreditación

	Matemática Discreta				
Stanley I. Grossman	"Älgebra Lineal"	2001	México	Mc Graw Hill	349-406
Kolman- Busby- Ross	Estructuras de Matemáticas Discretas Para la Computación	2002	México	Prentice-Hall Hispanoanericana S.A.	524
Richard Johnsonbaugh.	Matemáticas Discretas	2003	México	PEARSON	701
Kenneth H. Rosen	"Matemática Discreta y sus aplicaciones"	2004	España	Mc Graw Hill 5ta ed.	2004

Bibliografía complementaria en la web

http://www.dma.fi.upm.es/ctorres/11m.html

http://gaussianos.com/teoria-de-numeros-elemental-aritmetica-modular/

http://es.wikipedia.org/wiki/Aritmética modular

http://mx.answers.yahoo.com/question/index?qid=20070105033326AAJ0tJ2&show=7

http://www.geocities.com/tapiamauricio/matrices/contmatrices.html

http://www.lafacu.com/appuntes/matematicas/matrices/default.html

http://www.lafacu.com/appuntes/matematicas/matr_dt/default.html

http://www.ecci.ucr.ac.cr/formato.html

http://www.ecci.ucr.ac.cr/orga.ht

http://www.ecci.ucr.ac.cr/formato.html Algebra matricial

http://www.cnice.mecd.es/mem2000/algebra/index.html

Página interactiva dedicada al cálculo matricial y de determinantes: ejemplos, ejercicios, tests, etc.

http://das-www.harvard.edu/es/academics/courses/sc141/sc141.html

http://www.cs.cornell.edu/info/courses/spring-94/sc314/lec7/lec7.html

Aula de Mate http://www.aulademate.com

Temas, ejercicios y aplicaciones interactivas de matemáticas

www.recursosomatematicos.com (consultaría matemática-descargas)

http://mda.uab.es/areadeinvestigaciones

http://www.cs.stedwards.edu/~jsnowde/

Temas, ejercicios y aplicaciones interactivas de

matemáticashttp://www.bibliotecavirtual.com

http://www.estructuradedatos/arbolesbinarios/problemas.html

http://diariomedico.com/normativa/norm281099com.htm

http://www.iladiba.com/marzo99/HTM/AVTERAPE.html

http://www.ciencia.vanguardia.es/ciencia/portada/p354.html

www.recursosomatematicos.com (consultaría matemática-descargas)

Matemáticas educativas http://www.edumat.net

Apuntes, problemas, informática aplicada y artículos matemáticos.

Maquina de estado finito

http://delta.cs.cinvestav.mx/~gmorales/ta/node53.

http://caminantes.metropoliglobal.com/web/matematicas/matrices.

http://www.sc.cinvestav.mx/sc/publica/chapa/intro lm/node1.html

Autómatas finitos

http://www.inf.udec.el~leaform/11.htm

http://www.inf.udec.el~leaform/01.htm

DIRECCIONES INTERESANTES

http://nti.educa.rcanaria.es/rtee/didmat.htm

http://www.mat.ucm.es/

http://www.geocities.com/CapeCanaveral/Galaxy/4004/fima.html

http://members.xoom.com/pmatematicas/

http://www.mat.ucm.es/socrates/

http://www.pdfpad.com/graphpaper/3D Graphing: Interactive