

Universidad Ricardo Palma FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA ELECTRONICA

PLAN DE ESTUDIOS 2015-II

SILABO

1. DATOS ADMINISTRATIVOS

1.1 Nombre del curso : ALGEBRA LINEAL

1.2 Código : ACM003

1.3 Tipo del curso : Teórico – Práctica.
1.4 Área Académica : Matemática
1.5 Condición : Obligatorio
1.6 Nivel : III Ciclo
1.7 Créditos : 02

1.8 Horas semanales
 1.9 Requisito
 1.10 Professor
 1.10 Professo

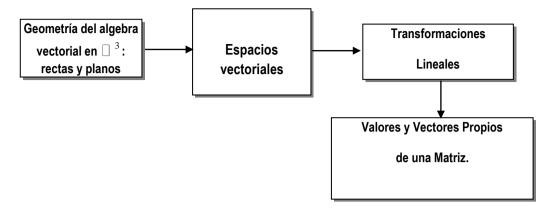
2. PROPÓSITOS GENERALES

Tiene como propósito brindar al estudiante los conceptos y propiedades del álgebra vectorial, espacios vectoriales y las transformaciones lineales que le permita desarrollar habilidades que usará más adelante en diversos contextos de su especialidad.

3. SÍNTESIS DEL CONTENIDO

Rectas y planos en R³. Espacios y sub espacios vectoriales. Transformaciones lineales. Valores y vectores propios de una matriz. Ortogonalización de vectores. Formas bilineales y formas cuadráticas. Aplicaciones.

4. COMPETENCIAS DE LA CARRERA


- **3.1.** Analiza, diseña, especifica, modela, selecciona y prueba circuitos, equipos y sistemas electrónicos analógicos y digitales, con criterio para la producción industrial y uso comercial.
- **3.2.** Evalúa, planifica, diseña, integra, prueba, opera y mantiene redes de telecomunicaciones y/o de automatización industrial en el marco del desarrollo sostenible.
- **3.3.** Evalúa, desarrolla, adapta, aplica y mantiene tecnologías electrónicas en Telecomunicaciones, en automatización, en bioingeniería, resolviendo problemas que plantea la realidad nacional y mundial.

5. COMPETENCIAS DEL CURSO

- 4.1. Identifica el carácter científico de la matemática. Resuelve problemas haciendo uso de tecnologías modernas.
- 4.2. Identifica y opera con las formas de presentación de las ecuaciones de rectas y planos en el espacio.
- 4.3. Define y utiliza la estructura de espacios y subespacios vectoriales. Define y opera con transformaciones lineales
- 4.4. Interpreta, analiza y opera con los conceptos de valores y vectores propios de una matriz asociada a una transformación lineal. Diagonaliza una matriz.
- 4.5 Interpreta, analiza y opera con el proceso de ortonormalizacion de Gram Schmidt.

ESCUELA ELECTRÓNICA PÁGINA 1

6. RED DE APRENDIZAJE

7. PROGRAMACION SEMANAL DE LOS CONTENIDOS

UNIDAD TEMÁTICA Nº 1: RECTAS Y PLANOS EN EL ESPACIO TRIDIMENSIONAL. \square ³

Logros de la unidad:

- Identifica y utiliza las formas en que se puede escribir las ecuaciones de una recta y de un plano en el espacio.
- Utiliza la interpretación geométrica de los conceptos algebraicos, para resolver problemas en el espacio.

Nº de horas: 12

SEMANA	CONTENIDOS	ACTIVIDADES DE APRENDIZAJE
	La Recta en R ³ . Posiciones relativas de dos rectas.	Define e interpreta geométricamente la
1	Rectas paralelas y ortogonales. Angulo entre rectas.	recta en el espacio.
		Resuelve problemas de aplicación
	Distancia entre punto y recta. Distancia mínima entre dos	Interpreta geométricamente la distancia
2	rectas. El plano.	entre dos rectas.
	Ecuaciones del plano. Posiciones relativas de dos	
3	planos: Planos paralelos y ortogonales. Intersección de	concepto de plano.
	dos planos	
	Distancia de un punto a un plano. Problemas de	
4	aplicación.	Práctica Calificada N°1

UNIDAD TEMÁTICA Nº 2: ESPACIOS VECTORIALES

Logros de la unidad:

- Identifica si un conjunto de elementos matemáticos constituye o no la estructura denominada espacio vectorial.
- Analiza y reconoce si un subconjunto de un espacio vectorial constituye un subespacio vectorial.

Nº de horas: 15

SEMANA	CONTENIDOS	ACTIVIDADES DE APRENDIZAJE	
5	Espacios vectoriales. Definición. El espacio vectorial \square n Aplicaciones.	Define el concepto de espacio vectorial. Identifica propiedades de un espacio vectorial.	
6	Combinaciones lineales y dependencia e independencia lineal de vectores. Sistema de generadores.	Analiza la dependencia e independencia lineal de un conjunto de vectores.	
7	Base y dimensión de un espacio vectorial de dimensión finita. Aplicaciones	Práctica Calificada N°2	
8	EXAMEN PARCIAL	EXAMEN COMUN 1	

ESCUELA ELECTRÓNICA PÁGINA 2

SEMANA	CONTENIDOS	ACTIVIDADES DE APRENDIZAJE
9	Espacios Vectoriales Euclídeos. Producto interno de vectores. Propiedades. Aplicaciones.	Resuelve problemas de producto interno en e.v.e. Participación grupal
10	Conjunto ortogonal y ortonormal de vectores. Proceso de ortonormalización de GRAM-SCHMIDT. Aplicaciones.	Ortogonaliza vectores utilizando método de Gram-Schmidt.

UNIDAD TEMÁTICA Nº 3: TRANSFORMACIONES LINEALES

Logros de aprendizaje:

- Reconoce transformaciones lineales, aplica los conceptos en solución de problemas y reconoce su importancia en el desarrollo tecnológico.
- Determina la matriz asociada a una transformación lineal entre dos espacios vectoriales de R^m a Rⁿ.

Nº de horas: 6

SEMANA	CONTENIDOS	ACTIVIDADES DE APRENDIZAJE		
11	Transformaciones lineales. Núcleo y rango. Teorema de la dimensión del núcleo y el rango. Transformaciones lineales: Inyectivas y suryectivas. Isomorfismos.	Interpreta geométricamente el concepto de imagen y núcleo de una transformación lineal. Practica Calificada N°3		
12	Teoremas fundamentales de las transformaciones lineales. Matriz asociada a una transformación lineal en espacios vectoriales de R ⁿ en R ^m	Utiliza los valores característicos para determinar base de un espacio vectorial.		

UNIDAD TEMATICA Nº 4: VALORES Y VECTORES PROPIOS DE UNA MATRIZ.

Logros de la unidad:

- Reconoce si un vector dado del espacio vectorial Rⁿ es un autovector de dicho espacio.
- Analiza si la matriz asociada a una transformación lineal de Rⁿ en Rⁿ admite vectores propios o no.
- Discrimina si un conjunto de vectores de un espacio vectorial es o no un conjunto ortogonal u ortonormal. A partir de un conjunto de vectores linealmente independientes dados, construye un conjunto de vectores ortonormales.

Nº de horas: 9

SEMANA	CONTENIDO	ACTIVIDADES DE APRENDIZAJE	
13	Autovalores y Autovectroes de una transformación lineal. Polinomio característico de una matriz. Autovalores y autovectores de una matriz.	Aplica el concepto de polinomio característico y halla los valores y vectores propios de una matriz.	
14	Matrices que representan la misma transformación lineal. Traza de una matriz. Matrices semejantes. Diagonalización de una matriz.	Practica Calificada N°4	
15	Formas bilineales y formas cuadráticas. Aplicaciones.	Aplicaciones a la geometría analítica.	
16	EXAMEN FINAL	EXAMEN COMÚN 2	
17	EXAMEN SUSTITUTORIO		

ESCUELA ELECTRÓNICA PÁGINA 3

8. **TECNICAS DIDACTICAS**

- 7.1 Descripción y análisis de los teoremas y demostración de sus propiedades.
- 7.2 Explicación y aplicación en la solución de problemas.
- 7.3 Aplicación de los métodos: Inductivo, deductivo, y expositivo dialogado.

9. **EQUIPOS Y MATERIALES**

- **8.1** Equipos e instrumentos:
 - Proyector de vista fija, multimedia
 - Computadoras (software matemático: MATLAB, MATHCAD)

8.2 Materiales:

- Pizarra, tiza, plumones
- Guía de prácticas dirigidas.
- Copias de resumen de clase

10. **EVALUACION**

9.1 Criterios:

- La asistencia a clase es del 70% como mínimo.
- Participación en el desarrollo de las clases.

9.2 Fórmula:

- Se tomarán cuatro prácticas calificadas (P), se elimina una de menor calificación.
- Tres exámenes: un examen parcial (EP), un examen final (EF) y un examen sustitutorio (ES) que reemplaza en caso de ser mayor al (EP) o (EF).

La nota Final (PF) se obtiene mediante la siguiente fórmula: PF = [(P1 + P2 + P3 + P4)/3 + EP + EF]/3

11. REFERENCIAS BIBLIOGRAFICAS Y OTRAS FUENTES

BÁSICA:

AUTOR	TITULO	AÑO	LUGAR	EDITORIAL	№ PÁG.
Stanley I.	Algebra Lineal	2010	México	Mc. Graw Hill	536
Grossman	_				
COMPLEMENTADIA:					

COMPLEMENTARIA:

AUTOR	TITULO	AÑO	LUGAR	EDITORIAL	Nº PÁG.
Francis G. Florey	Fundamentos de Algebra Lineal y Aplicaciones	2000	España	Prentice Hall Internacional	364
Kolman Bernard, Hill David R.	Algebra Lineal con Aplicaciones y Matlab	2006	Argentina	Pearson Prentice Hall	760
Rojo Armando	Algebra II	1976	Argentina	El Ateneo	395

Referencias en la Web

www.cidse.itcr.ac.cr/cursos-linea/Algebra-Lineal/html-alcides/index.html

http://mit.ocw.universia.net/18.06/f02/required-readings/index.html

www.cam.educaciondigital.net/pbs3/pu3pbs/PLANORECTA.htm

www.matematicastyt.cl/Algebra Lineal/Espacios Vectoriales/

www.matematicasbachiller.com/videos/algebra/

http://www.virtual.unal.edu.co/cursos/ingenieria/2001619/lecciones/algebra/node6. html

http://algebra-lineal.blogspot.com/2007 07 01 archive.html

http://www.matem.unam.mx/~rgomez/algebra/seccion 2.html

http://gl.wikibooks.org/wiki/%C3%81lxebra Lineal: Produto interno

http://dmle.cindoc.csic.es/en/revistas/detalle.php?numero=3574

http://www.math.gatech.edu/~bourbaki/math2601/Web-notes/

http://www.redeya.com/electronica/cursos/edigital/tutord1.htm

ESCUELA ELECTRÓNICA PÁGINA 4