

UNIVERSIDAD RICARDO PALMA FACULTAD DE INGENIERÍA SÍLABO PLAN DE ESTUDIOS 2015-II

I. DATOS ADMINISTRATIVOS

Asignatura : FÍSICA III Código : AC F004

Naturaleza : Teórico-Práctico-Experimental

Condición : Obligatorio Requisitos : AC F004

Nro. Créditos : 4

Nro. de horas : Teoría-2 / Práctica-2 / Laboratorio-2

Semestre Académico : 2020-1

Docente : Mg. Reyes Ñique J. Miguel Correo Institucional : juan.reyes@urp.edu.pe

II. SUMILLA

La asignatura de Física III pertenece a la formación profesional básica de las carreras de Ingeniería. La asignatura es de naturaleza teórico—práctico—experimental y su propósito es que los estudiantes puedan comprender los fenómenos relacionados con la electricidad y el magnetismo. Está constituida de cuatro unidades de aprendizaje: electrostática, circuitos de corriente continua, electromagnetismo, circuitos de corriente alterna.

III. COMPETENCIAS GENÉRICAS A LAS QUE TRIBUTA LA ASIGNATURA

- Autoaprendizaje.
- Investigación científica y tecnológica.
- Comportamiento ético. Liderazgo compartido. Responsabilidad social.

IV. COMPETENCIAS ESPECÍFICAS A LAS QUE TRIBUTA LA ASIGNATURA

- Soluciona problemas de Ingeniería.
- Dominio de las Ciencias.
- Experimentación y Pruebas.

V. DESARROLLA EL COMPONENTE DE:

INVESTIGACIÓN (X) RESPONSABILIDAD SOCIAL (X)

VI. LOGRO DE LA ASIGNATURA

Resuelve problemas sobre: las fuerzas entre cargas eléctricas estáticas, los circuitos con corriente eléctrica, la interacción entre el campo magnético y las cargas y corrientes, la inducción electromagnética y los circuitos de CA utilizando las leyes, principios y teoremas de la electricidad y el magnetismo, mostrando orden y rigurosidad en su procedimiento.

VII. PROGRAMACIÓN DE LOS CONTENIDOS

UNIDAD I: ELECTROSTÁTICA

LOGRO DE APRENDIZAJE: Resuelve problemas relacionados al cálculo de: la fuerza eléctrica, la intensidad del campo eléctrico, el potencial eléctrico, la capacitancia y la conexión de capacitores, para lo cual reconoce y elige las formulas correspondientes, mostrando orden y rigurosidad.

Semana	Contenido	
1	Carga eléctrica. Electrización. Tipos de carga eléctrica. Cuantización y Ley de conservación de la carga eléctrica. Conductores y aisladores. Ley de Coulomb. Principio de superposición. Distribuciones discreta y continua de la carga eléctrica.	Introducción al Laboratorio.
2	Campo eléctrico. Intensidad del campo eléctrico. Calculo de la intensidad del campo eléctrico debido a cargas puntuales y a cargas continuas. Líneas de campo eléctrico. Ley de Gauss. Calculo de la intensidad del campo eléctrico. Movimiento de cargas puntuales en un campo eléctrico homogéneo.	Laboratorio 1.
3	Potencial eléctrico. Calculo del potencial eléctrico debido a cargas puntuales y a cargas continuas. Diferencia de po- tencial eléctrico. Relación entre la intensidad del campo eléctrico y el potencial eléctrico. Curvas equipotenciales.	Laboratorio 2.
4	Propiedades electrostáticas de los conductores. Energía potencial eléctrica. Capacitores. Capacitancia. Capacitor de placas paralelas. Conexión de capacitores: en serie y en paralelo. Energía almacenada en un capacitor. Capacitores con dieléctrico.	Seminario
5	Monitoreo y Retroalimentación. Evaluación del Logro (E1)	Laboratorio 3.

UNIDAD II: CIRCUITOS DE CORRIENTE CONTINUA

LOGRO DE APRENDIZAJE: Resuelve problemas relacionados al cálculo de la intensidad de corriente eléctrica en circuitos de corriente continua con baterías, resistores y capacitores, para lo cual reconoce y elige las formulas correspondientes, mostrando orden y rigurosidad.

Semana	Contenido	
6	Corriente eléctrica. Intensidad de corriente eléctrica y densidad de corriente. Ley de Ohm y resistencia eléctrica. Conexión de resistores: en serie y en paralelo. Potencia eléctrica. Efecto Joule.	Laboratorio 4.
7	Circuitos de corriente continua. Fuerza electromotriz. Reglas de Kirchhoff. Circuitos RC. Carga y descarga de un capacitor. Gráficos de carga, corriente y voltaje en función del tiempo.	Seminario
8	Monitoreo y Retroalimentación. Evaluación del Logro (E2)	Laboratorio 5.

UNIDAD III: ELECTROMAGNETISMO

LOGRO DE APRENDIZAJE: Resuelve problemas relacionados al cálculo de: fuerzas magnéticas sobre cargas en movimiento y corrientes eléctricas, la inducción magnética debido a corrientes eléctricas, fuerzas electromotrices y corrientes inducidas por variación del flujo magnético, para lo cual reconoce y elige las formulas correspondientes, mostrando orden y rigurosidad.

Semana	Contenido	
9	Campo magnético. Inducción magnética. Líneas de campo magnético. Fuerza magnética sobre una carga puntual en movimiento. Fuerza de Lorentz.	Laboratorio 6.
10	Fuerza magnética sobre alambres conductores con corriente eléctrica. Torque sobre una espira con corriente eléctrica. Momento dipolar magnético. Motor eléctrico.	Laboratorio 7.
11	Corrientes eléctricas como fuentes de campo magnético. Ley de Biot-Savart. Ley de Ampere. Calculo de la inducción magnética debido a un alambre recto, una espira circular y una bobina con corriente.	Laboratorio 8.
12	Inducción electromagnética. Flujo magnético. Fuerza electromotriz y corriente eléctrica inducidas. Ley de Faraday y Regla de Lenz. Transformador eléctrico. Autoinducción e inductancia.	Seminario
13	Monitoreo y Retroalimentación. Evaluación del Logro (E3)	Laboratorio 9.

UNIDAD IV: CIRCUITOS DE CORRIENTE ALTERNA

LOGRO DE APRENDIZAJE: Resuelve problemas relacionados al cálculo de los parámetros que caracterizan a las voltajes y corrientes armónicas en los circuitos de corriente alterna, para lo cual reconoce y elige las formulas correspondientes, mostrando orden y rigurosidad.

Semana	Contenido	
14	Corriente alterna (AC). Generador de corriente alterna.	
	Parámetros de una corriente eléctrica armónica: amplitud,	Laboratorio 10.
	frecuencia, periodo, ángulo de fase. Valor eficaz.	
15	Circuito RLC en serie y en paralelo. Impedancia y reac-	
	tancias. Desfase de señales eléctricas. Resonancia. Faso-	Seminario
	res y diagrama fasorial.	
16	Monitoreo y Retroalimentación.	Finalización
	Evaluación del Logro (E4)	
17	RETROALIMENTACIÓN	

VIII. ESTRATEGIAS DIDÁCTICAS

Aula invertida, Aprendizaje Colaborativo, Disertación, Simulación de experimentos.

IX. MOMENTOS DE LA SESIÓN DE APRENDIZAJE VIRTUAL

La modalidad no presencial desarrollará actividades sincrónicas (que los estudiantes realizarán al mismo tiempo con el docente) y asincrónicas (que los estudiantes realizarán independientemente fortaleciendo su aprendizaje autónomo. La metodología del aula invertida organizará las actividades de la siguiente manera:

Antes de la sesión

Exploración: preguntas de reflexión vinculada con el contexto, otros.

Problematización: conflicto cognitivo de la unidad, otros.

Durante la sesión

Motivación: bienvenida y presentación del curso, otros.

Presentación: PPT en forma colaborativa, otros.

Práctica: resolución individual de un problema, resolución colectiva de un problema, otros.

Después de la sesión

Evaluación de la unidad: presentación del producto.

Extensión / **Transferencia:** presentación en digital de la resolución individual de un problema.

X. EVALUACIÓN

La modalidad no presencial se evaluará a través de productos que el estudiante presentará al final de cada unidad. Los productos son las evidencias del logro de los aprendizajes y serán evaluados a través de rúbricas cuyo objetivo es calificar el desempeño de los estudiantes de manera objetiva y precisa.

Retroalimentación. En esta modalidad no presencial, la retroalimentación se convierte en aspecto primordial para el logro de aprendizaje. El docente devolverá los productos de la unidad revisados y realizará la retroalimentación respectiva.

UNIDAD	INSTRUMENTOS	PORCENTAJE
I	Rúbrica	25%
II	Rúbrica	25%
III	Rúbrica	25%
IV	Rúbrica	25%

Instrumento	Sigla
Evaluación del Logro de Unidad	E
Promedio de Laboratorios	PL
Nota Final	NF

- De 04 Evaluaciones se sustituye una, la de menor nota.
- De 10 Laboratorios se anulan dos, los de menor nota.
 El Promedio de Laboratorios (PL) sustituye a la Evaluación más baja.

$$PL = \frac{L1 + L2 + L3 + L4 + L5 + L6 + L7 + L8 + L9 + L10}{8}$$

La Nota Final (NF) de la asignatura resulta de aplicar la siguiente fórmula:

$$NF = \frac{E1 + E2 + E3 + E4 + PL}{4}$$

XI. RECURSOS

- Equipos: computadora, laptop, Tablet, celular.
- Materiales: apuntes de clase del Docente, separatas de problemas, lecturas, videos.
- Plataformas: Blackboard Collaborate Ultra, Flipgrid, Simulaciones PhET, Kahoot, Thatquiz, Geogebra.

XII. REFERENCIAS BIBLIOGRÁFICAS

- Serway R. A., Jewett J. W. (2015). Física para Ciencias e Ingeniería. Volumen 2. México. 9na edición. Cengage Learning.

- Tipler P. A., Mosca G. (2010). Física para la Ciencia y la Tecnología. Volumen 2. España. 6ta edición. Editorial Reverté.
- Sears, Zemansky, Young, Freedman (2013). Física Universitaria. Volumen 2. México. 13va edición. Pearson Educación.
- Resnick, Halliday, Krane (2005). Física. Volumen 2. 5ta edición. CECSA.
- http://www.sc.ehu.es/sbweb/fisica3/
- http://www.sc.ehu.es/sbweb/fisica/default.htm
- https://www.youtube.com/watch?v=x1-Si-bwIPM4&list=PLyQSN7X0ro2314mKyUiOILaOC2hk6Pc3j&index=2
- http://wikipedia.org

*** * ***