

UNIVERSIDAD RICARDO PALMA FACULTAD DE INGENIERÍA ESCUELA: INDUSTRIAL

EXAMEN FINAL DE: INVESTIGACION DE OPERACIONES I (IN 0506)

PROFESORES: Ing. Víctor Beltrán Saravia/ Lic. Aldo Madrid Lizárraga/ Lic. Raúl Loayza Jaqui SEMESTRE: 2006 – II GRUPOS: 01- 02

Fecha 05 de Diciembre de 2007 Hora: 16.00 – 18.00 Duración de la prueba: 2 Horas. NOTA: SIN CALCULADORAS, LAS RESPUESTAS SE MARCAN EN ESTA HOJA, EL CUADERNILLO SERÁ USADO PARA CALCULOS. RESULTADOS EL 7 DE DICIEMBRE A LAS 18: HRS. EN SALA DE PROFESORES

	Indi	ique en el paréntesis, con V si es Verdadero y F si es Falso los siguientes enunciados:	2.5 pt	intos.
	a.	El dual es una interpretación económica del primal.	()
	b.	El costo reducido es un costo que depende del incremento de valores del lado derecho d	e las	
		restricciones	.()
	c.	La regla del 100 por ciento se aplica para verificar que el modelo está bien formulado	()
	d.	La creación de una oferta ficticia es suficiente para equilibrar un modelo de transporte	()
	e.	El modelo de asignación de recursos es un PPL	į.)
2.	Cor	mplete las oraciones de manera correcta.	2.5 pu	ntos.
	a.	Una extensión del dea problemas de distribución	entre	nodos
		intermedios se ha denominado como de		
	b.	Un problema de asignar agentes a tareas, se puede plantear como un de		
		y como un de		
	c.	El, es la cantidad en la cual debe mejorarse el coe	ficiente	de la
		función objetivo, antes de que la variable correspondiente pueda asumir un valor p	ositivo	en la
		solución óptima.		
	đ.	A partir de la última iteración de un modelo denominado puede encon	trarse e	l valor
		de la variables del modelo denominado		
	e.	El rango de valores en los cuales puede variar un coeficiente de función objetivo sin	causar i	ningún
	٠.	cambio en los valores de la variable de decisión de la solución óptima,		
		de	sc den	OHIHIA
		UC		

3. El Stud "14" de propiedad de un conocido deportista, está experimentando con dietas especiales para sus caballos de carrera. Los componentes del forraje disponible son: estándar, avena enriquecida con vitaminas y un nuevo aditivo para forraje con vitaminas y minerales. Los valores nutricionales en unidades por libra y los costos de los componentes son: Cada libra de forraje estándar contiene 0.8 unidades del ingrediente A, una unidad del ingrediente B y 0.1 unidades del ingrediente C. Cada libra de avena enriquecida contiene 0.2 unidades del ingrediente A, 1.5 unidades del ingrediente B y 0.6 unidades del ingrediente C. Cada libra del nuevo aditivo contiene 0.0 unidades del ingrediente A, 3 unidades del ingrediente B y 2 unidades del ingrediente C. Los requisitos mínimos de dieta diaria por caballo son 3 unidades del ingrediente A, 6 unidades del ingrediente B y cuatro unidades del ingrediente C. Para controlar su peso, la alimentación diaria para un caballo no debe exceder de seis libras. Los costos de los componentes del alimento son de 0.25, 0.50 y 3 dólares por libra. 4 puntos

OBJECT 1)	IVE FUNCTI 5.973	ION VALUE
VARIAB	LE VALUE	REDUCED COST
X1	3.514	0.000
X2	0.946	0.000
X3	1.541	0.000
ROW S	LACK OR	DUAL
1	SURPLUS	PRICES
1)	0.000	-1.216
2)	3.544	0.000
3)	0.000	-1.959
4)	0.000	0.919

RANGOS DE SENSIBILIDAD							
OBJ COEFFICIENT RANGES							
VARIABLE	CURRENT VALUE	LOWER LIMIT	UPPER LIMIT				
	VALUE	LIMIT	LIMIT				
XI	0250	-0.393	No Upper Limit				
X2	0.500	No Lower Limit	0.925				
X3	3.000	1.522	No Upper Limit				
	RIGHTHAND	SIDE RANGES					
ROW	CURREN	T LOWER	UPPER				
	VALUE	LIMIT	LIMIT				
1	3.000	1.143	3.368				
2	6.000	No Lower Limit	9.554				
3	4.000	2.100	4.875				
4	6.000	5.563	8.478				

- 3.1Si el costo de la libra del aditivo para forraje con vitaminas y minerales, aumentase de 3 dólares a 13 dólares por libra, los valores de la solución óptima:
- a) No varían b) Se incrementan c) Se reducen d) n.a. e) Cambian el modelo
- 3.2 Incrementar a 4 unidades el ingrediente A, como requisito mínimo de dieta diaria para cada caballo, provocaría que el costo total de la dieta se:
- a) Reduzca en \$1.216 b) Se mantenga en \$1.216 c) Se incremente en \$1.216 d) No cambie e) n.a.
- 3.3 De igual manera, una reducción a 2 unidades del ingrediente A, como requisito mínimo de dieta diaria para cada caballo, provocaría que el costo total de la dieta se:
- a) Reduzca en \$1.216 b) Se mantenga en \$1.216 c) Se incremente en \$1.216 d) No cambie e) n.a.
- 3.4 Al analizar los rangos de las variables, se observa que el costo del forraje estándar para caballos, es negativo, entonces la afirmación de que el "Stud 14", puede obtener gratis el forraje estándar para caballos:
 a) Varía la dieta óptima b) la afirmación es falsa c) No varía la dieta óptima d) Faltaría ingredientes e) n.a.
- 4,- Una Compañía elabora 5 productos en 2 plantas. La PLANTA 1 elabora los productos Q1, Q2 y Q3. La PLANTA 2 elabora los productos Q4 y Q5. La cantidad de materia prima y el espacio necesario de almacenamiento se da en la siguiente tabla: 4 puntos

PRODUCTO	Q1	Q2	Q3	Q4	Q5	DISPONIBILIDAD
Materia Prima (lb)	2	4	4	3	3	6000 libras
Espacio (pies ³)	1	2	2	2	3	4000 pies ³
UTILIDAD	\$20	\$15	\$12	\$30	\$16	

Los productos Q1, Q2 y Q4 son comprados por EMPRESAS INDUSTRIALES y entre los tres productos se deben producir como mínimo 200 unidades. Los productos Q3 y Q5 son comprados por EMPRESAS COMERCIALES y entre los dos productos se deben producir como mínimo 300 unidades. Cada uno de los cinco productos necesita de un tiempo de procesamiento de 1 hora. La PLANTA 1 dispone de 1400 horas y la PLANTA 2 dispone de 1000 horas. Se ha impuesto la condición de utilizar todas las horas en su totalidad (es decir que no hayan horas muertas) en ambas plantas.

OBJECTIVE FUNCTION VALUE 1) 54400.00

VARIABLE	VALUE	REDUCED COST
Q1	1300.000000	.000000
Q2	.000000	11.000000
Q 3	100.000000	.000000
Q4	800.000000	.000000
Q5	200.000000	.000000

ROW	SLACK OR SURPLUS	DUAL PRICE
2)	.000000	3.000000
3)	300.000000	.000000
4)	1900.000000	.000000
5)	.000000	-14.000000
6)	.000000	14.000000
7)	000000	21 000000

RANGES IN WHICH THE BASIS IS UNCHANGED:

	OBLOGERE	CIENT RANGES	
VARIABLE	CURRENT	ALLOWABLE	7 2 70 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	COEF	INCREASE	DECREASE
Q1	20.000000	6.000000	INFINITY
Q2	15.000000	11.000000	INFINITY
Q3	12.000000	INFINITY	6.000000
Q4	30,000000	INFINITY	6.000000
Q5	16.000000	6.000000	INFINITY
	RIGHTHAND	SIDE RANGES	
ROW	CURRENT	ALLOWABLE	ALLOWABLE
	RHS	INCREASE	DECREASE

2	6000.000000	400.000000	200.000000
3	4000.000000	INFINITY	300.000000
4	200.000000	1900.000000	INFINITY
5	300.000000	300.000000	200.000000
6	1400.000000	100.000000	200.000000
7	1000.000000	66.666660	133.333300

Respuesta:

5. Se tiene 4 tipos de fertilizantes X, Y, Z, W; que son requeridos para fertilizar seis Areas de irrigación A,

Las sets áreas de irrigación requieren (indistintamente) de lo sigulente:			La oferta y cos de transporte a	incluido el flete mo) es:	
Área Tipo de Demanda Fertilizante Mensual			Fertilizante	Oferta Mensual	Precio x Tonelada(\$)
A	X, Y	2500	X	3200	1500
В	X, Z, W	3200	Y	4000	1600
C	X, Y, Z, W	3800	Z	4200	1900
D	X, Y, W	3000	W	4600	1800
E	X, Y, Z, W	3500			

Formule el problema de transporte como un modelo de programación lineal Fn.Obj. ≤; RHS =

Determine un plan óptimo de la entrega de fertilizantes a las diferentes zonas de irrigación.

Plan òptimo: V.O.=

, X11 = X32 =

,X12 = , X35 = ,X23 = X42 =

,X24 =