

Facultad de Ingeniería

Escuela de Ingeniería Electrónica

ALGEBRA LINEAL

(CE-0206)

Profesor: Pedro Contreras Chamorro

Grupo: 01 Semestre: 2012-I

EXAMEN PARCIAL

Fecha: 08-05-12 Hora: 15:30 - 17:30

La evaluación es sin copias ni apuntes.

Está prohibido: préstamo de calculadoras, correctores, uso de celulares, consumo de bebidas, comidas y cigarrillos.

- 1. Hallar la ecuación paramétrica de la recta L que pasa por el punto (1, 2, 3), es ortogonal al vector $\vec{a} = (0, 3, 6)$ y corta a la recta, $L_1: 1 - x = y = z - 1$. (4 ptos.)
- Sea el plano,

$$P_1: p = (0,0,1) + t(1,-1,1) + s(-1,-1,-1), t, s \text{ en } \square$$

a) Hallar un vector \vec{n} ortogonal a P_1

(2 ptos.)

- **b**) Utilizando el vector \vec{n} , hallar la ecuación caretesiana del plano P, que pase por los puntos (2, 2, 2), (-2, 2, -2) y es ortogonal a P_1 . (2 ptos.)
- En \Box ² consideremos los subespacios

$$V = (x, y) \in \square^2 / 2x - y = 0$$
 , $U = (x, y) \in \square^2 / x - 2y = 0$

- a) Hallar los generadores de V y U : $V = L[v_1]$, $U = L[v_2]$ (1 pto.)
- **b)** Construir, $f: \Box^2 \to \Box$ lineal de modo que, $f(v_1) = 0$, $f(v_2) = 1$ y verificar las condiciones. (3 ptos.)

4. Consideremos,

$$V = (x, y, z) \in \square^3 / 3x - y + z = 0$$

- a) Hallar los generadores de V: $V = L[v_1, v_2]$. (1 pto.)
- **b)** Construir, $f: V \rightarrow \square^2$ lineal de modo que, $f(v_1) = (1,0), f(v_2) = (0,1)$ (2 ptos.)
- c) Si (4,5) en \Box^2 , hallar (x, y, z) en V de modo que f(x, y, z) = (4,5) (1 pto.)

5. Consideremos

$$V = (x, y, z) \in \square^3 / x + y + z = 0$$

$$U = (x, y, z) \in \square^3 / x - y - z = 0$$

Construir, $f: \Box^3 \to \Box^3$ lineal, de modo que, f(V) = U. (4 ptos.)