Universidad Ricardo Palma

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA INFORMÁTICA DEPARTAMENTO ACADÉMICO DE INGENIERÍA

PLAN DE ESTUDIOS 2006-II

SÍLABO

1. DATOS ADMINISTRATIVOS

1.1. Nombre del curso : DISEÑO DE SISTEMAS DE INFORMACIÓN

1.2. Código : IF 0603

1.3. Tipo del curso : TEORICO - PRÁCTICO

1.4. Área Académica : SISTEMAS DE INFORMACIÓN

1.5.Condición:OBLIGATORIO1.6.Nivel:VI CICLO

1.7. Créditos : 04

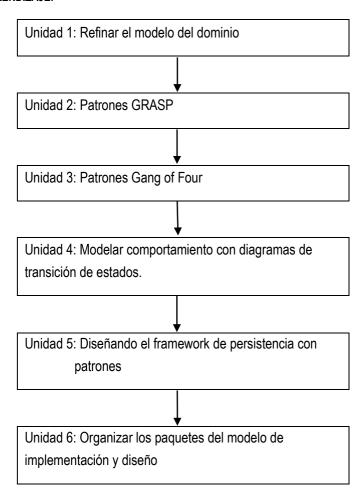
1.8. Horas semanales : 02 = TEORÍA, 02 = PRÁCTICA, 03 = LABORATORIO
1.9. Requisito : IF 0504 ANÁLISIS DE SISTEMAS DE INFORMACIÓN

IF 0505 DISEÑO DE INTERFACES

1.10. Profesores : Mg. Carlos García Quirós

2. SUMILLA.

El curso de Diseño de Sistemas de Información corresponde al sexto semestre del Plan de Estudios de la Escuela Académico Profesional de Ingeniería Informática. Es de naturaleza teórica-práctico.


3. COMPETENCIAS DE LA CARRERA

- 3.1 Integra soluciones tecnológicas de información y procesos del negocio para encontrar las necesidades del negocio y otras empresas permitiendo alcanzar sus objetivos en una efectiva y eficiente forma.
- **3.2** Encuentra la tecnología necesaria del negocio, el gobierno, las instituciones de salud y educacionales y otras organizaciones económicas.
- **33** Desarrolla y mantiene sistemas de software confiables y eficientes y que sea económico desarrollarlos y mantenerlos y que satisfagan los requisitos definidos por los clientes.

4. COMPETENCIAS DEL CURSO

- 4.1 Interpreta y aplica los principios de gestión de proyectos de sistemas iterativo, evolutivo y ágil.
- 4.2 Analiza y aplica las fases de concepción y elaboración, el modelo del dominio y la definición de la arquitectura preliminar.
- 4.3 Resuelve un modelo del dominio refinado para diseñar adecuadamente la solución planteada.
- 4.4 Utiliza los patrones de diseño y otras técnicas que propician facilidad de mantenimiento y reutilización de la aplicación resultante.
- 4.5 Analiza y diseña el Diagrama de transición de estados
- 4.6 Aplica adecuadamente las relaciones entre los objetos correspondientes al diseño de la aplicación.
- 4.7 Identifica y define la propagación de operaciones de los componentes de la aplicación
- 4.8 Organiza los paquetes del modelo de implementación, diagrama de despliegue del diseño de la aplicación.
- 4.9 Desarrolla un proyecto haciendo uso del enfoque evolutivo. Esta iteración corresponde con la segunda y tercera iteración de la fase de Elaboración.
- 4.10 Selecciona una arquitectura, identifica los sub-sistemas y modelo de persistencia conpatrones.
- 4.11 Integra soluciones informáticas para la solución de casos reales.
- 4.12 Desarrolla proyectos informáticos con herramientas de última generación.
- 4.13 Propicia el trabajo grupal e individual.

5. RED DE APRENDIZAJE:

6. PROGRAMACIÓN SEMANAL DE LOS CONTENIDOS

UNIDAD TEMÁTICA Nº 1: Refinar el modelo del dominio

Logro de la Unidad: Reconoce los conceptos (objetos) significativos en el dominio del problema

Nº de horas: 14

SEMANA	CONTENIDOS	ACTIVIDADES DE APRENDIZAJE
	Introducción	
	Construcción del Modelo del Dominio	
	Refinar el modelo agregando diferentes tipos de	
1	Asociaciones	
	1. Revisión de los Diagramas de Secuencia, con clases	Exposición y presentación del profesor de la
	de Análisis - Estereotipadas	Teoría con el desarrollo práctico de las
	2. Desarrollo de los Diagramas de Colaboración con	aplicaciones. Participación de alumnos con
	clases de Diseño – Identificación de los métodos y su	consultas y preguntas.
2	ubicación en el Modelo de Dominio	Evaluación de Entrada, de diagnóstico

UNIDAD TEMÁTICA Nº 2: Patrones GRASP

Logro de la Unidad: El alumno estará en capacidad de comprender y aplicar algunos de los principales patrones de Diseño Dirigido por Responsabilidades, conocidos como GRASP.

Nº de horas: 21

SEMANA	CONTENIDOS	ACTIVIDADES DE APRENDIZAJE
3	Patrones GRASP: Experto, Creador, Bajo Acoplamiento, Alta Cohesión, Controlador.	Exposición y presentación del profesor de la Teoría con el desarrollo práctico de las aplicaciones.
	Patrones GRASP: Polimorfismo, Fabricación Pura, In-	Participación de alumnos con consultas y
4	dirección, No hable con extraños	preguntas.
5	Prácticas Calificadas de Teoría y Laboratorio	

UNIDAD TEMÁTICA N° 3: Patrones Gang of Four

Nº de horas: 21

SEMANA	CONTENIDOS	ACTIVIDADES DE APRENDIZAJE
	Patrones Creacionales: Abstract Factory (Fábrica abstracta, Factory Method (Método de fabricación), Singleton (Instancia única).	
6	Builder, Prototype	
	Patrones Estructurales: Adaptador (Adapter), Fachada (Facade).	Exposición y presentación del profesor de la teoría con el desarrollo práctico de las aplicaciones. Participación de alumnos
7	Proxy, Bridge, Composite, Decorator, Flyweight	con consultas y preguntas.

SEMANA	IANA CONTENIDOS ACTIVIDADES DE APRENDIZAJE	
8	EXAMEN PARCIAL	
	Patrones de Comportamiento: Command (Orden), Iterator (Iterador), Observer (Observador), Strategy (Estrategia)	
9	Método Plantilla (Template Method), Chain of Responsibility (Cadena de responsabilidad), Interpreter (Intérprete), Mediator (Mediador), Memento (Recuerdo), State (Estado), Visitor (Visitante)	Exposición y presentación del profesor de la Teoría con el desarrollo práctico de las aplicaciones. Participación de alumnos con consultas y preguntas.

UNIDAD TEMÁTICA Nº 4: Modelar comportamiento con diagramas de transición de estado

Logro de la Unidad: El alumno estará en la capacidad de identificar y describir los estados y eventos más interesantes de un objeto

Nº de horas: 7

SEMANA	CONTENIDOS	ACTIVIDADES DE APRENDIZAJE
	Elaboración (Iteración 1)	Exposición y presentación del profesor de la Teoría
10	Definición de los diagramas de transición de	con el desarrollo práctico de las aplicaciones.
	estados.	Participación de alumnos con consultas y preguntas.

UNIDAD TEMÁTICA N° 5: Diseñando el framework de persistencia con patrones

Logro de la Unidad: El alumno incorporará a su modelo del sistema nuevos elementos para manejar la persistencia empleando patrones.

Nº de horas: 14

SEMANA	CONTENIDOS	ACTIVIDADES DE APRENDIZAJE
	Elaboración (Iteración 3)	Exposición y presentación del profesor de la
11	Visibilidad, asociaciones	Teoría con el desarrollo práctico de las
		aplicaciones. Participación de alumnos con
	Consideraciones para el diseño del framework de	consultas y preguntas.
12	persistencia con patrones	Solución de casos prácticos

UNIDAD TEMÁTICA N° 6: Organizar los paquetes del modelo de implementación y diseño modelo del dominio **Logro de la Unidad:** El alumno Incorporará a su modelo del sistema los subsistemas y paquetes corporación de componentes predefinidos y el uso de patrones para la conectividad con la base de datos.

Nº de horas: 14

SEMANA	CONTENIDOS	ACTIVIDADES DE APRENDIZAJE
	Representación de los componentes: Diagrama de	
13	implementación	
	Representación del ambiente físico: Diagrama de	Exposición del profesor.
14	despliegue	Solución de casos prácticos
15	Sustentación de trabajos Grupales	
16	EXAMEN FINAL	

7. TÉCNICAS DIDÁCTICAS

- 7.2. Interrogación didáctica
- 7.3. Análisis teórico
- 7.4. Logro Práctico-experimental
- 7.5. Los estudiantes concluyen y exponen elaboración de los proyectos con sus respectivos grupos

8. EQUIPOS, INSTRUMENTOS Y MATERIALES

8.1 Equipos e Instrumentos:

Proyector multimedia. Presentaciones multimedia Laboratorio de Informática

8.2 Materiales:

Pizarra y tizas y/o plumones.

9. EVALUACIÓN

9.1. Criterios:

La asistencia a clases es del 70% como mínimo.

Conocimiento de los tópicos tomados en las prácticas teóricas y de laboratorio. Sustentación del Proyecto en dos etapas.

Concepto	Detalle	Porcentaje
Teoría	Examen Parcial	20 %
	Examen Final	30 %
Práctica	Controles (3 controles)	10 %
Laboratorio	Prácticas Calificadas (2 Prácticas)	10 %
	Trabajo del curso (3 sustentaciones)	30 %

9.2. Fórmula:

PROMEDIO:

0.2*PAR1 + 0.3*FIN1 + 0.1*(PRT1 + PRT2)/2 +

0.1*(LAB1 + LAB2)/2 + 0.3*(PYL1 + PYL2)/2

• La última nota del Trabajo de Investigación tiene doble peso

10. REFERENCIAS BIBLIOGRÁFICAS Y OTRAS FUENTES

- "Applying UML and Patterns" 3rd Edition. Craig Larman. Pearson Education, Inc., 2005.
- "Object-oriented Modeling and Design". James Rumbaugh y otros. Prentice Hall, Inc. 1991
- "Patrones de Diseño". Gamma, E; Helm, R; Jhonson, R y Vissides, J. Editorial Addison Wesley 2003
- "The Unified Modeling Language User Guide". Grady Booch, Ivar Jacobson, James Rumbaugh. Addison-Wesley, 1999.
- "The Unified Modeling Language Reference Manual". Grady Booch, Ivar Jacobson, James Rumbaugh. Addison-Wesley, 1999.

Referencias en la Web

- http://www-06.ibm.com/software/rational/
- http://www-306.ibm.com/software/rational/uml/resources/documentation.html
- http://www.uml.org/
- http://www.gofpatterns.com/
- http://www.tutorialspoint.com/design_pattern/index.htm