UNIVERSIDAD RICARDO PALMA

FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA INFORMÁTICA

SÍLABO

PLAN DE ESTUDIOS 2006-II

PLAN DE SESIÓN DE APRENDIZAJE

I. DATOS GENERALES

Nombre del curso : Estructura de Datos y Algorítmica

Código del curso : IF0405

Créditos : 3

Naturaleza del curso : Teórico - práctico

Número de horas de teoría: 2Número de horas de práctica: 2Número de horas de laboratorio: 3

Requisitos : IF0307 Introducción a Base de Datos

Área académica : Ciencias de la Computación Profesores : Augusto Vega, Vera Virginia

1. SUMILLA

El curso de Estructuras de Datos y Algorítmica corresponde al IV ciclo de formación de la Escuela Académico Profesional de Ingeniería Informática. El curso es de naturaleza teórico-práctica

Competencia:

Tiene como objetivo brindar a los participantes los conocimientos y las habilidades para la resolución de problemas complejos mediante programas de computador utilizando eficazmente estructuras de datos y algoritmos.

Unidades temáticas:

El contenido del curso de Estructuras de Datos y Algorítmica se divide en siete unidades temáticas: análisis de algoritmos y abstracción de datos; resolución de problemas generales y de recursividad; los TDA lista, pila y cola; tablas de dispersión de tipo abierta, el TDA conjunto, árboles binarios, árboles n-arios y grafos.

2. COMPETENCIAS DE LA CARRERA

Desarrolla y mantiene sistemas de software confiables y eficientes y que sea económico desarrollarlos y mantenerlos y que satisfagan los requisitos definidos por los clientes.

3. COMPETENCIA DEL CURSO

- 1. Emplea el análisis de algoritmos y la abstracción de datos para solucionar problemas eficazmente.
- 2. Diseña e implementa algoritmos para la solución de problemas generales y de recursividad.
- 3. Diseña e implementa TDAs listas y listas específicas (pilas y colas) para la solución de problemas.
- 4. Diseña e implementa tablas de dispersión para la solución de problemas.
- 5. Diseña e implementa TDAs conjuntos para la solución de problemas.
- 6. Diseña e implementa algoritmos para la solución de problemas que proceden sobre árboles, ya sean binarios o n-arios.

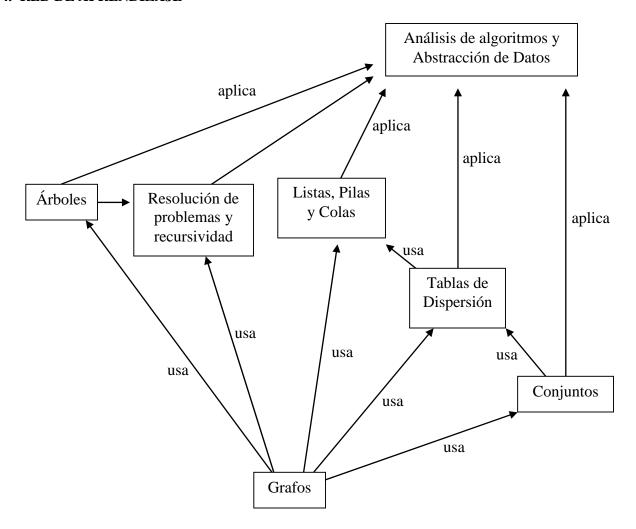
7. Diseña e implementa grafos para la solución de problemas.

El curso de Estructuras de Datos y Algorítmica ha sido organizado en 7 unidades de aprendizaje, las mismas que son:

Unidad 1: Análisis de algoritmos y abstracción de datos.

Unidad 2: Resolución de problemas y recursividad.

Unidad 3: El TDA Listas y listas específicas.


Unidad 4: Tablas de dispersión.

Unidad 5: El TDA Conjunto.

Unidad 6: Árboles.

Unidad 7: Grafos.

4. RED DE APRENDIZAJE

5. UNIDADES DE APRENDIZAJE

Unidad 1: Análisis de Algoritmos y Abstracción de Datos

Logros de aprendizaje:

- Conoce y sigue el proceso de solución de problemas
- Conoce y diferencia: tipos de datos simples y compuestos, TDA, estructuras de datos.
- Entiende lo referente al tiempo de ejecución de un programa y cómo medirlo.

Semana	Temas	Actividades		
1	 Análisis de algoritmos y abstracción de datos: ➤ Problemas y programas de computador. ➤ Algoritmos y el proceso de la obtención de la solución de los problemas. ➤ Tipos de datos primitivos, tipos de datos abstractos (TDA) y estructuras de datos. 	Exposición del profesor. Ejercicios simples de ejemplo.		
2 (día 1)	 Análisis de algoritmos y abstracción de datos (1ra. clase): Medición del tiempo de ejecución de un programa. Notación O mayúscula. Velocidad de crecimiento de los programas. Cálculo del tiempo de ejecución de un programa. 	Exposición del profesor. Ejercicios simples de ejemplo.		

Bibliografía:

• Aho A. V., Hopcroft J. E. & Ullman J. D. (1988). Estructuras de Datos y Algoritmos. *Addisson-Wesley Iberoamericana*. 1–29.

Enlaces WEB:

- López B. Notación O grande. Obtenido en Enero del 2009, desde http://www.itnuevolaredo.edu.mx/maestros/sis_com/takeyas/Apuntes/Matematicas%20para%20Computacion/Apuntes/Notacion%200%20grande.pdf
- Gayo D. Algorítmica y Lenguajes de Programación: Eficiencia y Notación Asintótica. Obtenido en Enero del 2009, desde

http://www.di.uniovi.es/~dani/asignaturas/transparencias-leccion13.PDF

• Carrasco H. Estructura de Datos. Obtenido en Enero del 2009, desde http://www.ganimides.ucm.cl/haraya/doc/Clases.ppt

Unidad 2: Resolución de problemas y recursividad

Logros de aprendizaje:

- Diseña e implementa algoritmos para la solución de problemas generales.
- Diseña e implementa algoritmos para la resolución de problemas recursivos.
- Emplea métodos para solucionar problemas generales y de recursividad.

Semana	Temas	Actividades	
2 (día 2)	 Resolución de problemas y recursividad: ➤ Concepto de recursividad. Problemas recursivos y soluciones recursivas. La recursividad frente a la iteración y los problemas de la recursividad. La recursividad de cola. Eliminación de la recursividad de cola. Recursividad directa e indirecta. Uso de funciones auxiliares en la resolución de problemas recursivos. Metodología para la resolución de problemas. ➤ El método de reducción del problema y otras metodologías para la resolución de problemas generales. ➤ Resolución de problemas recursivos de baja complejidad. 	Exposición del profesor. Ejercicios de recursividad de baja complejidad.	
3	Resolución de problemas y recursividad: > Resolución de problemas recursivos de baja y mediana complejidad.	Exposición y discusión con el profesor. Ejercicios de baja y mediana complejidad.	
4	Resolución de problemas y recursividad: > Resolución de problemas recursivos de mediana y alta complejidad.	Exposición y discusión con el profesor. Ejercicios de mediana y alta complejidad.	
5	Resolución de problemas y recursividad: Resolución de problemas recursivos de alta complejidad.	Exposición y discusión con el profesor. Ejercicios de alta complejidad.	

Bibliografía:

• Vega A. (1998). Curso de Pascal. Fondo Editorial P.U.C.P. 285–343.

Unidad 3: El TDA Lista y listas específicas (Pilas y Colas)

Logros de aprendizaje:

• Diseña e implementa TDAs listas y listas específicas (pilas y colas) para la solución de problemas.

Semana	Temas	Actividades		
	El TDA Lista:	Exposición y discusión		
	Definición del TDA Lista.	con el profesor.		
6	Implementación de listas mediante arreglos.	Implementación en el		
	Implementación de listas mediante nodos enlazados, con un solo	lenguaje de		
	enlace.	programación.		
		Exposición y discusión		
	El TDA Lista:	con el profesor.		
7	Listas circulares simplemente enlazadas.	Implementación en el		
	Listas circulates simplemente emazadas.	lenguaje de		
		programación.		
8	EXAMEN PARCIAL			
		Exposición y discusión		
9	Listas específicas:	con el profesor.		
	Pilas y colas: Definición e implementación a partir de la reutilización	Implementación en el		
	de listas circulares.	lenguaje de		
		programación.		

Bibliografía:

• Augusto Vega (2004). Tutor de Java, tipo 'links', v1.0. 17.2.3.1, 17.2.3.2, 17.2.3.3, 17.3.1.

• Aho A. V., Hopcroft J. E. & Ullman J. D. (1988). Estructuras de Datos y Algoritmos. *Addisson-Wesley Iberoamericana*. 38–48, 53–61.

Unidad 4: Tablas de dispersión

Logros de aprendizaje:

- Diseña e implementa tablas de dispersión de tipo abierta para la solución de problemas.
- Utiliza tablas de dispersión de tipo abierta las cuales manejan pares clave-valor, como una estructura de datos que puede contener valores repetidos.

Semana	Temas	Actividades		
	Tablas de dispersión:	Exposición y discusión		
	Definición de la estructura de datos Tabla de Dispersión (TD).	con el profesor.		
10	> Tabla de dispersión de tipo abierta.	Implementación en el		
	Implementación de tablas de dispersión de tipo abierta con el uso de	lenguaje de		
	pares clave-valor.	programación.		

Bibliografía:

- Augusto Vega (2004). Tutor de Java, tipo 'links', v1.0. 17.4.1.1, 17.4.3.2.1, 17.4.3.3.1.
- Aho A. V., Hopcroft J. E. & Ullman J. D. (1988). Estructuras de Datos y Algoritmos. *Addisson-Wesley Iberoamericana*. 38–48, 53–61.

Unidad 5: Conjuntos

Logros de aprendizaje:

- Diseña e implementa TDAs conjuntos para la solución de problemas.
- Aprende a implementar TDAs conjuntos en base a la utilización de tablas de dispersión que manejan pares clave-valor (Unidad 4), en donde las claves de la tabla son los elementos del conjunto.

Semana	Sesión / Temas	Actividades		
	El TDA Conjunto:	Exposición y discusión con		
11	Definición del TDA Conjunto.	el profesor.		
11	Implementación de conjuntos a través de la reutilización de tablas de	Implementación en el		
	dispersión.	lenguaje de programación.		

Bibliografía:

- Augusto Vega (2004). Tutor de Java, tipo 'links', v1.0. 17.5.1.
- Aho A. V., Hopcroft J. E. & Ullman J. D. (1988). Estructuras de Datos y Algoritmos. Addisson-Wesley Iberoamericana. Capítulo 4.

Unidad 6: Árboles

Logros de aprendizaje:

• Aprende a resolver problemas que proceden sobre árboles, ya sean binarios o n-arios.

Semana	Temas	Actividades		
12	 Árboles binarios: Definición. Creación y recorrido en profundidad. Resolución de problemas de baja y mediana complejidad, los cuales proceden sobre árboles binarios. 	Exposición y discusión con el profesor. Ejercicios de baja, mediana y alta complejidad.		
13	 Árboles binarios: Resolución de problemas de alta complejidad, los cuales proceden sobre árboles binarios. Árboles n-arios: Definición. Creación y recorrido en profundidad. Resolución de problemas de baja y mediana complejidad, los cuales proceden sobre árboles n-arios. 	Exposición y discusión con el profesor. Ejercicios de baja, mediana y alta complejidad.		
14	 Árboles n-arios: Resolución de problemas de alta complejidad, los cuales proceden sobre árboles n-arios. 	Exposición y discusión con el profesor. Ejercicios de baja, mediana y alta complejidad.		

Bibliografía:

- Aho A. V., Hopcroft J. E. & Ullman J. D. (1988). Estructuras de Datos y Algoritmos. *Addisson-Wesley Iberoamericana*. Capítulo 3.
- Lafore R. Data Structures & Algorithms in Java (1998). Sams. Capítulo 8.

Unidad 7: Grafos

Logros de aprendizaje:

Diseña e implementa grafos para la solución de problemas.

Semana	Sesión / Temas	Actividades		
15	 Grafos: ➤ Grafos. Definición e implementación del TDA Grafo. ➤ Representación enlazada de grafos. ➤ Búsqueda en profundidad y búsqueda en amplitud usando la representación enlazada de grafos. 	Exposición y discusión con el profesor. Implementación en el lenguaje de programación.		
16	EXAMEN FINAL			
17	EXAMEN SUSTITUTORIO			

Bibliografía:

- Aho A. V., Hopcroft J. E. & Ullman J. D. (1988). Estructuras de Datos y Algoritmos. *Addisson-Wesley Iberoamericana*. Capítulos 6 y 7.
- Lafore R. Data Structures & Algorithms in Java (1998). Sams. Capítulos 13 y 14.

6. METODOLOGÍA

La metodología del curso está estrictamente orientada a la adquisición de conocimientos básicos y, sobre todo, de habilidades, por lo cual los temas teóricos son reforzados en gran medida por ejercicios resueltos en la misma clase y en el laboratorio. El profesor expondrá inicialmente los temas teóricos y proseguirá con el desarrollo de ejercicios, los cuales irán progresivamente incrementando su dificultad.

7. EVALUACIÓN

- Los criterios que se usarán para la evaluación de los alumnos:
 - o Habilidades adquiridas y demostradas en el laboratorio para la aplicación de los temas del curso.
 - Nivel de aprendizaje en el laboratorio.
- La nota final será la resultante de la siguiente fórmula:

```
PF 0.2*PAR1
+0.2*FIN1
+0.2*((LAB1+LAB2+LAB3+LAB4+LAB5+LAB6+LAB7)/6)
+0.3*PRO1
+0.1*NPA1
PAR1 = examen parcial
FIN1 = examen final
```

LAB_i = i-ésimo laboratorio calificado

PRO1=trabajo grupal NPA1=participación

8. Bibliografía y direcciones WEB.

	Análisis de algoritmos	Recursividad	Listas	Tablas de dispersión	Conjuntos	Árboles	Grafos
Lafore R. (1998). Data Structures & Algorithms in Java . <i>Sams</i> .		x	х	x		х	х
Aho A. V., Hopcroft J. E. & Ullman J. D. (1988). Estructuras de Datos y Algoritmos. Addisson-Wesley Iberoamericana.	x		x	x	x	x	x
Vega A. (1998). Curso de Pascal . <i>Fondo Editorial P.U.C.P</i> , 1998		x				х	х
Vega A. (2004). Tutor de Java, Tipo 'links', v1.0.			х	x	x		
NetBeans IDE http://www.netbeans.org	x	х	х	x	x	х	х

- López B. Notación O grande. Obtenido en Enero del 2009, desde http://www.itnuevolaredo.edu.mx/maestros/sis com/takeyas/Apuntes/Matemat
 - http://www.itnuevolaredo.edu.mx/maestros/sis_com/takeyas/Apuntes/Matematicas%20para%20Computacion/Apuntes/Notacion%200%20grande.pdf
- Gayo D. Algorítmica y Lenguajes de Programación: Eficiencia y Notación Asintótica. Obtenido en Enero del 2009, desde
 - http://www.di.uniovi.es/~dani/asignaturas/transparencias-leccion13.PDF
- Carrasco H. Estructura de Datos. Obtenido en Enero del 2009, desde http://www.ganimides.ucm.cl/haraya/doc/Clases.ppt