

UNIVERSIDAD RICARDO PALMA FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA DE INFORMÁTICA

SÍLABO PLAN DE ESTUDIOS 2006-II

I. DATOS GENERALES

CURSO : CIRCUITOS Y SISTEMAS DIGITALES

CÓDIGO : IF 0403 CICLO : IV (Cuarto)

CRÉDITOS : 04

CONDICIÓN : Obligatorio HORAS DE TEORÍA : 1 hrs. HORAS DE PRÁCTICA : 2 hrs. HORAS DE LABORATORIO : 3 hrs.

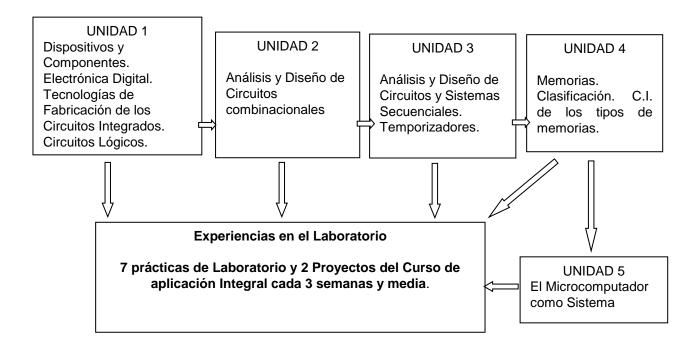
HORAS TOTALES : 6 hrs.

REQUISITO : IF 0305 Física y Circuitos ÁREA ACADÉMICA : Hardware, Redes y Comunicaciones de Datos

DOCENTE : Dr. (c) Ing. David Gerardo Arauco Cabrera

II. SUMILLA

El curso de Circuitos y Sistemas Digitales del Área de comunicaciones corresponde al cuarto semestre de la formación de la Escuela Académico Profesional de Ingeniería Informática. La naturaleza del curso es Teórico Práctico y Experimental. Tiene como objetivo el desarrollo de la tecnología digital como soporte de hardware de equipos electrónicos computarizados, obliga al conocimiento de los fundamentos teóricos y prácticos de los Circuitos y Sistemas Digitales. En el caso específico en el Área de Informática, es necesario conocer las herramientas en las que esta basado el funcionamiento de todo sistema computarizado moderno. Los contenidos del curso de Circuitos y Sistemas Digitales se dividen en cinco unidades temáticas: Dispositivos y Componentes, Electrónica Digital, Tecnologías de Fabricación de los Circuitos Integrados, Circuitos Lógicos; Análisis y Diseño de Circuitos combinacionales; Análisis y Diseño de Circuitos y Sistemas Secuenciales, Temporizadores; Memorias, Clasificación, C.I. de los tipos de memorias; El Microcomputador como Sistema.


III. COMPETENCIAS DE LA CARRERA

 Encuentra la tecnología necesaria del negocio, el gobierno, las instituciones de salud, educacionales y otras organizaciones de económica. Desarrolla y mantiene sistemas de software confiables, eficientes y que sea económico desarrollarlos, mantenerlos y que satisfagan los requisitos definidos por los clientes.

IV. COMPETENCIAS DEL CURSO

- 1. Saber los conceptos generales y las funciones principales de los Dispositivos y Componentes Electrónicos y las tecnologías de Fabricación de los Circuitos Integrados para la simulación y el diseño de Circuitos Lógicos.
- 2. Reconoces y emplear los diferentes C.I.'s para el diseño de Circuitos Combinacionales.
- 3. Reconoces y emplear los diferentes C.I.'s para el diseño de Circuitos y Sistemas Secuenciales.
- 4. Reconocer y emplear los C.I.'s para el diseño de Sistemas Digitales con los diferentes tipos de Memorias.
- 5. Brindar una idea clara del Microcomputador Como un Sistema, su estructura, e implementación física.
- 6. Reconocer y saber el estudio de un microcomputador real de tal modo que el alumno esté en capacidad de simular y diseñar.

V. RED DE APRENDIZAJE

VI. UNIDADES DE APRENDIZAJE

UNIDAD 1: Dispositivos y Componentes. Electrónica Digital. Tecnologías de Fabricación de los Circuitos Integrados. Circuitos Lógicos.

Logro de la unidad: Saber y aplicar los conceptos generales y las funciones principales de los Dispositivos y Componentes Electrónicos, así como las tecnologías de Fabricación de los Circuitos Integrados para la simulación, implementación y diseño de Circuitos Lógicos.

Nº horas: 12

SEMANA (S) N° 1 y 2

Temas	Actividades
 Electrónica Digita. Dispositivos y Componentes electrónicos. Instrumentos de Medición y herramientas. Términos y Conceptos fundamentales. Funciones lógicas: AND, NAND, OR, NOR, NOT, XOR, XNOR, Compuertas de tres estados. Puertas lógicas con elementos discretos. Compuertas lógicas: TTL, CMOS. Parámetros de la familia TTL. Parámetros de la familia CMOS. Escalas de integración: SSI, MSI, LSI, VLSI, ULSI. Simulación en Circuit Maker. Diagrama de bloques de un circuito combinacional. Conceptos generales del análisis de circuitos combinacionales. 	Exposición y presentación del profesor de la Teoría con el desarrollo práctico de las aplicaciones. Participación de alumnos con consultas y preguntas. Desarrollo de los ejercicios y problemas tipos por el profesor y los alumnos. Evaluación de la primera unidad. Desarrollo en el laboratorio de experiencias la simulación por PC, diseño e implementación de circuitos reales según el calendario.
Lecturas selectas:	Según lo estipulado en Dr. (c) Ing. Arauco Cabrera David Gerardo. CD del curso "Circuitos y Sistemas Digitales".
Técnicas didácticas a emplear:	 Exposición Interrogación didáctica Solución de problemas Debate Exposición grupal Análisis teórico y Logro Práctico-experimental En este último caso, los estudiantes se agrupan para elaborar el desarrollo en el laboratorio de experiencias y la simulación por PC laboratorios del curso y los proyectos con sus respectivas Monografías del desarrollo y sustentación de los mismos.

Equipos y Materiales:		Dizarra v tizac v/o		
Equipos y Materiales.		Pizarra y tizas y/o plumones.		
		Retroproyector y		
	•	transparencias.		
		•		
	•	Guías para los Proyectos.		
	•	Separatas puntuales.		
	•	Laboratorio de		
		Dispositivos Electrónicos.		
	•	Laboratorio de Sistemas		
		Digitales.		
	•	Laboratorio de Computo.		
Bibliografía:	•	Ronald Tocci y Wilder		
		Neals Sistemas digitales.		
		Principios y aplicaciones.		
		Pearson Educación.		
		Mexico. 8va Edición.		
		2003. 991 paginas.		
	•	Morris Mano. Lógica y		
		diseño de computadores.		
		Prentice Hall - 1994.		
	•	Boylestad - Nashelsky,		
		Circuitos electrónicos.		
		Teoría de circuitos.		
		Prentice Hall 1996.		
		Hermosa Antonio,		
		Electrónica digital		
		práctica. Tecnología y		
		Sistemas Alfa		
		Omega/Marcombo 1996.		
		• W. Stallings,		
		^ · · · · ·		
		Organizacion y Arquitectura de		
		Computadores, 7ma.		
		Edición, Prentice Hall. 2		
		de Febrero 2009. 840		
		paginas.		
		Patterson, David A. y		
		John L. Hennessy		
		"Computer organization		
		and design: the hardware/software		
		interface /. David A.		
		Patterson, Amsterdam:		
		Elsevier, cop. 2005		
		Edition 3rd ed. 621		
		paginas.		
	Dr. (c) Ing. Arauco Cabrera David Carardo			
	Cabrera David Gerardo.			
	CD del curso			

"Arquitectura Computadores".	de

UNIDAD 2: Análisis y Diseño de Circuitos combinacionales

Logro de la unidad: Saber y aplicar los conceptos generales y las funciones principales de los Dispositivos y Componentes Electrónicos, así como las tecnologías de Fabricación de los Circuitos Integrados para la simulación, implementación y diseño de Circuitos Lógicos.

Nº horas: 24

SEMANA (S) N° 3, 4, 5 y 6

Ter	mas	Actividades
1.	Análisis y Diseño de Circuitos	Exposición y presentación del
	combinacionales. Unidad Lógica	profesor de la Teoría con el
	Aritmética (ALU). Circuitos de Control.	desarrollo práctico de las
2.	Circuitos Aplicativos. Análisis de circuitos	aplicaciones. Participación de
	combinacionales. Diseño de circuitos	alumnos con consultas y
	combinacionales. Diseño de circuitos	preguntas. Desarrollo de los
	Conversores, Diseño de circuitos	ejercicios y problemas tipos
	Decodificadores, Diseño de circuitos	por el profesor y los alumnos.
	Codificadores, Diseño de circuitos	Evaluación de la primera
	Comparadores, Circuitos integrados.	unidad. Desarrollo en el
3.	Restadores completos y semi-Restadores,	laboratorio de experiencias la
	Sumadores completos y semi-Sumadores.	simulación por PC, diseño e
4.	Multiplexores, diseño con los	implementación de circuitos
	multiplexores. De multiplexores, diseño	reales según el calendario.
	con los De multiplexores. Circuitos	
_	Integrados.	
5.	Análisis de circuitos combinacionales	
	parte 1. Algebra de Boole: postulados y	
	teoremas. Elaboración de Funciones Booleanas.	
6.	Simplificación de Funciones. Formas	
0.	canónicas. Método del Mapa de	
	Karnaugh. Producto de sumas y suma de	
	productos.	
7.	Códigos binarios. Diseño de circuitos	
١.	combinacionales.	
Lec	eturas selectas:	Según lo estipulado en Dr. (c)
		Ing. Arauco Cabrera David
		Gerardo. CD del curso
		"Circuitos y Sistemas
		Digitales".
Téc	cnicas didácticas a emplear:	Exposición
		Interrogación didáctica
		Solución de problemas
		Debate

	1	
	•	Exposición grupal
	•	Análisis teórico y
	•	Logro Práctico-
		experimental
	•	En este último caso, los
		estudiantes se agrupan
		para elaborar el
		desarrollo en el
		laboratorio de
		experiencias y la
		simulación por PC
		laboratorios del curso y
		los proyectos con sus
		respectivas Monografías
		del desarrollo y
		sustentación de los
		mismos.
		1111011105.
Equipos y Materiales:	•	Pizarra y tizas y/o
=quipoo j materialoo.		plumones.
	_	Retroproyector y
		transparencias.
	•	Guías para los Proyectos.
	•	Separatas puntuales.
	•	Laboratorio de
		Dispositivos Electrónicos.
	•	Laboratorio de Sistemas
		Digitales.
D1111 //	•	Laboratorio de Computo.
Bibliografía:	•	Ronald Tocci y Wilder
		Neals Sistemas digitales.
		Principios y aplicaciones.
		Pearson Educación.
		Mexico. 8va Edición.
		2003. 991 paginas.
	•	Morris Mano. Lógica y
		diseño de computadores.
		Prentice Hall - 1994.
	•	Boylestad - Nashelsky,
		Circuitos electrónicos.
		Teoría de circuitos.
		Prentice Hall 1996.
	•	Hermosa Antonio,
		Electrónica digital
		práctica. Tecnología y
		Sistemas Alfa
		Omega/Marcombo 1996.
		Organización y
CIDCUITOS V SISTEMAS DICITALES		Arquitectura de

- Computadores, 7ma. Edición, Prentice Hall. 2 de Febrero 2009. 840 paginas.
- Patterson, David A. v John Hennessy "Computer organization and design: the hardware/software interface /. David Α. Patterson. Amsterdam: Elsevier, cop. 2005 Edition 3rd ed. 621 paginas.
- Dr. (c) Ing. Arauco Cabrera David Gerardo.
 CD del curso "Arquitectura de Computadores".

UNIDAD 3: Circuitos y Sistemas Secuenciales. Temporizadores.

Logro de la unidad: Saber y aplicar los conceptos generales y las funciones principales de los Circuitos y Sistemas Secuenciales y el rol de los Temporizadores en el sistema secuencial, así como la aplicación de los Mapas de Karnaugh para la simulación, implementación y diseño de Circuitos y Sistemas Secuenciales. Registros. Definición, tipos de Registros PIPO, PISO, SISO y SIPO.

Nº horas: 30

SEMANA (S) N° 7, 8, 9, 10 y 11

Temas Actividades 1. Circuitos Secuenciales. Temporizadores. Exposición y presentación del Definición. Clasificación. profesor de la Teoría con el 2. Circuitos secuenciales síncronos. desarrollo práctico de las 3. Análisis de circuitos contadores. Diseño aplicaciones. Participación de de contadores. Tipos de contadores. alumnos con consultas y 4. Diseño de Circuitos de control con los preguntas. Desarrollo de los ejercicios y problemas tipos Mapas de Karnaugh. Análisis de circuitos contadores. por el profesor y los alumnos. 5. Diseño Evaluación de la primera contadores. **Tipos** unidad. Desarrollo en el contadores. Circuitos secuenciales Análisis de circuitos laboratorio de experiencias la síncronos. contadores. Diseño de contadores. simulación por PC, diseño e 6. Tipos de Temporizadores. implementación de circuitos Circuitos monoestables, biestables v astables. C.I. reales según el calendario. 74 121, C.I. 74123, C.I. 74124. El temporizador LM 555. Celdas básicas de memoria: Latch, Flip-Flop. Conversión y

tipos de Flip-Flop. 7. Registros. Definición, tipos de Registros PIPO, PISO, SISO y SIPO.	
Lecturas selectas:	Según lo estipulado en Dr. (c) Ing. Arauco Cabrera David Gerardo. CD del curso "Circuitos y Sistemas Digitales".
Técnicas didácticas a emplear:	 Exposición Interrogación didáctica Solución de problemas Debate Exposición grupal Análisis teórico y Logro Práctico- experimental En este último caso, los estudiantes se agrupan para elaborar el desarrollo en el laboratorio de experiencias y la simulación por PC laboratorios del curso y los proyectos con sus respectivas Monografías del desarrollo y sustentación de los mismos.
Equipos y Materiales:	 Pizarra y tizas y/o plumones. Retroproyector y transparencias. Guías para los Proyectos. Separatas puntuales. Laboratorio de Dispositivos Electrónicos. Laboratorio de Sistemas Digitales. Laboratorio de Computo.
Bibliografía:	 Ronald Tocci y Wilder Neals Sistemas digitales. Principios y aplicaciones. Pearson Educación. Mexico. 8va Edición. 2003. 991 paginas. Morris Mano. Lógica y

diseño de computadores. Prentice Hall - 1994. Boylestad - Nashelsky, Circuitos electrónicos. Teoría de circuitos. Prentice Hall 1996. Hermosa Antonio. Electrónica digital práctica. Tecnología y Sistemas Alfa Omega/Marcombo 1996. W. Stallings, Organización У Arquitectura de Computadores, 7ma. Edición, Prentice Hall. 2 de Febrero 2009. 840 paginas. Patterson, David A. y John L. Hennessy "Computer organization and design: hardware/software interface /. David A. Patterson, Amsterdam: Elsevier, cop. 2005 Edition 3rd ed. 621 paginas. Dr. (c) Ing. Arauco Cabrera David Gerardo. CD del curso "Arquitectura de Computadores".

UNIDAD 4 Memorias. Clasificación. C. I. de los tipos de memorias.

Logro de la unidad: Saber y aplicar los conceptos generales y las funciones principales de las Memorias. Conocer los Tipos de Memorias, saber para que se utilizan en los Sistemas y como están distribuidas en las Computadoras contemporáneas. Simulación, implementación en el diseño en los Sistemas Complejos.

Nº horas: 12

SEMANA (S) Nº 12 y 13

Te	mas			Actividades
1.	Memorias.	Clasificación.	Composición	Exposición y presentación del
	Interna.			profesor de la Teoría con el

 Memorias RAM. Composición Interna. Memorias ROM. Composición Interna. Memorias PROM. Composición Interna. Memorias EPROM. Composición Interna. Memorias EEPROM. Composición Interna. Memorias Flash. Composición Interna. Memorias de los Computadores Contemporáneos. Lecturas selectas:	desarrollo práctico de las aplicaciones. Participación de alumnos con consultas y preguntas. Desarrollo de los ejercicios y problemas tipos por el profesor y los alumnos. Evaluación de la primera unidad. Desarrollo en el laboratorio de experiencias la simulación por PC, diseño e implementación de circuitos reales según el calendario. Según lo estipulado en Dr. (c) Ing. Arauco Cabrera David Gerardo. CD del curso "Circuitos y Sistemas Digitales".
Técnicas didácticas a emplear:	 Exposición Interrogación didáctica Solución de problemas Debate Exposición grupal Análisis teórico y Logro Práctico-experimental En este último caso, los estudiantes se agrupan para elaborar el desarrollo en el laboratorio de experiencias y la simulación por PC laboratorios del curso y los proyectos con sus respectivas Monografías del desarrollo y sustentación de los mismos.
Equipos y Materiales:	 Pizarra y tizas y/o plumones. Retroproyector y transparencias. Guías para los Proyectos. Separatas puntuales. Laboratorio de Dispositivos Electrónicos. Laboratorio de Sistemas Digitales.

D1111 (4	•	Laboratorio de Computo.
Bibliografía:	•	Ronald Tocci y Wilder
		Neals Sistemas digitales.
		Principios y aplicaciones.
		Pearson Educación.
		Mexico. 8va Edición.
		2003. 991 paginas.
	•	Morris Mano. Lógica y
		diseño de computadores.
		Prentice Hall - 1994.
	•	Boylestad - Nashelsky,
		Circuitos electrónicos.
		Teoría de circuitos.
		Prentice Hall 1996.
	•	Hermosa Antonio,
		Electrónica digital
		práctica. Tecnología y
		Sistemas Alfa
		Omega/Marcombo 1996.
	•	W. Stallings,
		Organización y
		Arquitectura de
		Computadores, 7ma.
		Edición, Prentice Hall. 2
		de Febrero 2009. 840
		paginas.
	•	Patterson, David A. y
		John L. Hennessy
		"Computer organization
		and design: the
		hardware/software
		interface /. David A.
		Patterson, Amsterdam:
		Elsevier, cop. 2005
		Edition 3rd ed. 621
		paginas.
	•	Dr. (c) Ing. Arauco
		Cabrera David Gerardo.
		CD del curso
		"Arquitectura de
		Computadores".
		'

UNIDAD 5: El Microcomputador como Sistema.

Logro de la unidad: Saber y aplicar los conceptos generales y las funciones principales del Microcomputador como un Sistemas Complejo y el rol de los Temporizadores en el Microcomputador, así como los tipos de Computadores Personales. Simulación de los

Microcomputadores en su estructura interna como un Sistema Complejo, implementación y diseño del Microcomputador.

Nº horas: 24

SEMANA (S) Nº 14, 15, 16 y 17

Temas	Actividades
 El Microcomputador como Sistema. Circuito funcional y Circuito Electrónico de los Computadores. Microprocesadores Contemporáneos. Historia y Generaciones de los Computadores. Circuito en bloques de los tipos de Arquitecturas de Computadores. Conceptos y definiciones. 	Exposición y presentación del profesor de la Teoría con el desarrollo práctico de las aplicaciones. Participación de alumnos con consultas y preguntas. Desarrollo de los ejercicios y problemas tipos por el profesor y los alumnos. Evaluación de la primera unidad. Desarrollo en el laboratorio de experiencias la simulación por PC, diseño e implementación de circuitos reales según el calendario.
Lecturas selectas:	Según lo estipulado en Dr. (c) Ing. Arauco Cabrera David Gerardo. CD del curso "Circuitos y Sistemas Digitales".
Técnicas didácticas a emplear:	 Exposición Interrogación didáctica Solución de problemas Debate Exposición grupal Análisis teórico y Logro Práctico-experimental En este último caso, los estudiantes se agrupan para elaborar el desarrollo en el laboratorio de experiencias y la simulación por PC laboratorios del curso y los proyectos con sus respectivas Monografías del desarrollo y sustentación de los mismos.

21

Equipos y Materiales:	•	Pizarra y tizas y/o
		plumones.
	•	Retroproyector y
		transparencias.
	•	Guías para los Proyectos.
	•	Separatas puntuales.
	•	Laboratorio de
		Dispositivos Electrónicos.
	•	Laboratorio de Sistemas
		Digitales.
	•	Laboratorio de Computo.
Bibliografía:	-	Ronald Tocci y Wilder
bibliografia.		Neals Sistemas digitales.
		Principios y aplicaciones.
		Pearson Educación.
		Mexico. 8va Edición.
		2003. 991 paginas.
	•	Morris Mano. Lógica y
		diseño de computadores.
		Prentice Hall - 1994.
	•	Boylestad - Nashelsky,
		Circuitos electrónicos.
		Teoría de circuitos.
		Prentice Hall 1996.
	•	Hermosa Antonio,
		Electrónica digital
		práctica. Tecnología y
		Sistemas Alfa
		Omega/Marcombo 1996.
	•	W. Stallings,
		Organización y
		Arquitectura de
		Computadores, 7ma.
		Edición, Prentice Hall. 2
		de Febrero 2009. 840
		paginas.
	•	Patterson, David A. y
		John L. Hennessy
		"Computer organization
		and design: the
		hardware/software
		interface /. David A.
		Patterson, Amsterdam:
		Elsevier, cop. 2005
		Edition 3rd ed. 621
		paginas.
		. •
	•	Dr. (c) Ing. Arauco
		Cabrera David Gerardo.

CD del	curso
"Arquitectura	de
Computadores	"

VII. EXPERIENCIAS EN EL LABORATORIO:

Semana 1:

LABORATORIO:

LABORATORIO 00.- Reglamento e introducción a los laboratorios.

- Simulación e implementación de Circuitos con componentes y dispositivos electrónicos.
- Instrumentación: 1. Uso del osciloscopio. 2. Uso del DMM, fuentes y generador de señal.
- Simulación en Circuit Maker.

Semana 2:

LABORATORIO:

LABORATORIO 01.- Verificación de la tabla de función de las compuertas lógicas.

Semana 3:

LABORATORIO:

• LABORATORIO 02.- Verificación de la tabla de función de un circuito lógico.

Semana 4:

LABORATORIO:

• LABORATORIO 03.- Verificación del funcionamiento del Circuito integrado comparador 4 bit's. Diseño de un Comparador de 8 bit's.

Semana 5:

LABORATORIO:

LABORATORIO 04:

- Implementación y Verificación del funcionamiento del Circuito integrado Sumador Aritmético de 4 bit's.
- Diseño de un Sumador/Restador de 4 bit's.

Semana 6:

LABORATORIO:

 LABORATORIO 05: Verificación del C.I. 74181 y Diseño de un Multiplicador Aritmético de 4 bit's por 3 bit's.

Semana 7:

LABORATORIO:

• LABORATORIO 06: Latch's, Flip-Flop. Desplazamiento de frase ó palabra en display de 7 segmentos.

Semana 9:

LABORATORIO:

• **LABORATORIO 07:** Sistema de control para Panel Publicitario de 64 columnas y 7 filas de LED's.

Semana 10:

LABORATORIO:

• LABORATORIO 08: Proyecto Nº 1 Diseño e Implementación de un Sistema Digital. (Parte 1).

IF 0403

CIRCUITOS Y SISTEMAS DIGITALES

14 de

Semana 11:

LABORATORIO:

LABORATORIO 09: Proyecto Nº 1 Diseño e Implementación de un Sistema Digital (Parte 2).

Semana 12:

LABORATORIO:

LABORATORIO 10: Proyecto Nº 1 Diseño e Implementación de un Sistema Digital(Sustentación).

Semana 13:

LABORATORIO:

LABORATORIO 11: Proyecto Nº 2 Diseño e Implementación de un Micro Computador (Parte 1).

Semana 14:

LABORATORIO:

LABORATORIO 12: Proyecto Nº 2 Diseño e Implementación de un Micro Computador (Parte 2).

Semana 15:

LABORATORIO:

LABORATORIO 13: Proyecto Nº 2 Diseño e Implementación de un Micro Computador (Sustentación).

VIII. **AVANCE TEMÁTICO POR SEMANAS:**

Sem.	Capítulo	Temas		
1	1	TEORÍA: Dispositivos y Componentes. Electrónica Digital. Electrónica Digital. Funciones lógicas: AND, NAND, OR, NOR, NOT, XOR, XNOR, Compuertas de tres estados. Puertas lógicas con elementos discretos. Familias lógicas: TTL, CMOS. Dispositivos y Componentes electrónicos. Instrumentos de Medición y herramientas. Términos y Conceptos fundamentales. Simulación en Circuit Maker. PRACTICA: Dispositivos y Componentes electrónicos. Uso de los Instrumentos de Medición. Uso de la tarjeta de Simulación. LABORATORIO: LABORATORIO 00 Reglamento e introducción a los laboratorios. Simulación e implementación de Circuitos con componentes y dispositivos electrónicos. Instrumentación: 1. Uso del osciloscopio. 2. Uso del DMM, fuentes y generador de señal. Simulación en Circuit Maker.		
2	1	TEORÍA: Tecnologías de Fabricación de los Circuitos		

		 Integrados. Circuitos Lógicos. Familias de los Circuitos Integrados: TTL, CMOS. Parámetros de la familia TTL. Parámetros de la familia CMOS. Escalas de integración: SSI, MSI, LSI, VLSI, ULSI. Diagrama de bloques de un circuito combinacional. Conceptos generales del análisis de circuitos combinacionales. Circuitos integrados de las compuertas lógicas. Tablas de función de las compuertas lógicas.
		PRACTICA: • Análisis de Circuitos Combinacionales. Comprobación de las tablas de función de las compuertas lógicas. LABORATORIO:
		 LABORATORIO 01 Verificación de la tabla de función de las compuertas lógicas.
3	2	TEORÍA: Análisis de los Circuitos Combinacionales. Simplificación de Funciones. (Parte 1). Análisis de circuitos combinacionales parte 1. Algebra de Boole: postulados y teoremas. Elaboración de Funciones Booleanas. Simplificación de Funciones. Formas canónicas. Método del Mapa de Karnaugh. Producto de sumas y suma de productos. Códigos binarios. Diseño de circuitos combinacionales. PRACTICA: Ejercicios: Análisis de Circuitos Combinacionales (Parte 1). Método del Mapa de Karnaugh. Producto de sumas y suma de productos. Códigos binarios. Diseño de circuitos combinacionales.
		LABORATORIO: • LABORATORIO 02 Verificación de la tabla de función de un circuito lógico.
4	2	TEORÍA: Análisis y Diseño de Circuitos combinacionales (Parte 2). Análisis de circuitos combinacionales. Diseño de circuitos combinacionales. Diseño de circuitos Conversores, Diseño de circuitos Decodificadores, Diseño de circuitos Codificadores, Diseño de circuitos Comparadores, Circuitos integrados.

5	2	PRACTICA: Primera Práctica Calificada. LABORATORIO: LABORATORIO 03: Verificación del funcionamiento del Circuito integrado comparador 4 bit's. Diseño de un Comparador de 8 bit's. TEORÍA: Circuitos Multiplexores, De multiplexores, Restadores y Sumadores. Circuitos Integrados. Restadores completos y semi-Restadores, Sumadores completos y semi-Sumadores Multiplexores, diseño con los multiplexores. De multiplexores, diseño con los de multiplexores. Circuitos Integrados. PRACTICA: Diseño de Circuitos Sumadores/Restadores empleando sumadores completos y medios sumadores. LABORATORIO: LABORATORIO 04: Implementación y Verificación del funcionamiento del Circuito integrado Sumador Aritmético de 4 bit's. Diseño de un Sumador/Restador de 4 bit's.
7	3	TEORÍA: Teoría y diseño de La Unidad Lógica Aritmética y el control digital. Circuitos Integrados. Unidad Lógica Aritmética (ALU). Circuitos de Control. Circuitos Aplicativos. PRACTICA: Diseño de Circuitos de control y de la Unidad Lógica Aritmética. LABORATORIO: LABORATORIO 05: Verificación del C.I. 74181 y Diseño de un Multiplicador Aritmético de 4 bit's por 3 bit's. TEORÍA: Circuitos Secuenciales. Temporizadores. Definición. Clasificación. Circuitos monoestables, biestables y astables. C.I. 74 121, C.I. 74123, C.I. 74124 El temporizador LM 555. Celdas básicas de memoria: Latch, Flip-Flop. Conversión y tipos de Flip-Flop.

		 Circuitos secuenciales. Diseño de Temporizadores con el C.I. LM555. Conversión de un Flip-Flop en Otro. LABORATORIO: LABORATORIO 06: Latch's, Flip-Flop. Desplazamiento de frase ó palabra en display de 7 segmentos.
8		Examen Parcial
9	3	TEORÍA: Circuitos y Sistemas con C. I. para el control Diseño de Circuitos de control con los Mapas de Karnaugh. Análisis de circuitos contadores. Diseño de contadores. Tipos de contadores. PRACTICA:
		Ejercicios: Circuitos secuenciales síncronos.
		LABORATORIO: • LABORATORIO 07: Sistema de control para Panel Publicitario de 64 columnas y 7 filas de LED's.
10	3	TEORÍA: Registros Circuitos y Sistemas secuenciales, Contadores, Clasificación. Registros, Clasificación. C. I. 's. (Parte 1). Circuitos secuenciales síncronos. Análisis de circuitos contadores. Diseño de contadores. Tipos de contadores. PRACTICA: Tercera Práctica Calificada. LABORATORIO: LABORATORIO 08: Proyecto Nº 1 Diseño e Implementación de un Sistema Digital. (Parte 1).
11	3	TEORÍA: Diseño de Registros Circuitos y Sistemas secuenciales: Contadores, Clasificación. Registros, Clasificación. C.I.'s. (Parte 2). Circuitos secuenciales síncronos. Análisis de circuitos contadores. Diseño de contadores. Tipos de contadores. Diseño de Registros PRACTICA: Tercera Práctica Calificada. LABORATORIO: LABORATORIO 09: Proyecto Nº 1 Diseño e Implementación de un Sistema Digital (Parte 2).

21

12	4	TEORÍA: Memorias. Concepto. Clasificación. C.I. de los tipos de memorias. (Parte 1). PRACTICA: • MEMORIAS. Clasificación. Composición Interna. • Memorias RAM, ROM, PROM, EPROM, EEPROM. • Memorias de los Computadores Contemporáneos. LABORATORIO: • LABORATORIO 10: Proyecto Nº 1 Diseño e Implementación de un Sistema Digital (Sustentación).
13	4	TEORÍA: Diseño de Memorias. Concepto. Clasificación. C.I. de los tipos de memorias. (Parte 2). PRACTICA: MEMORIAS. Clasificación. Composición Interna. Memorias RAM, ROM, PROM, EPROM, EPROM. Memorias de los Computadores Contemporáneos.
		LABORATORIO: • LABORATORIO 11: Proyecto № 2 Diseño e Implementación de un Micro Computador (Parte 1).
14	5	TEORÍA: Historia y Generaciones de los Computadores. Circuito en Bloques de los tipos de Arquitecturas de Computadores. Conceptos y definiciones. PRACTICA: • Diseño de un Microcomputador. LABORATORIO:
		 LABORATORIO 12: Proyecto N ^o 2 Diseño e Implementación de un Micro Computador (Parte 2).
15	5	TEORÍA: Circuito funcional y Circuito Electrónico de los Computadores. Microprocesadores Contemporáneos. PRACTICA: Cuarta Práctica Calificada. LABORATORIO: LABORATORIO 13: Proyecto N° 2 Diseño e Implementación de un Micro Computador (Sustentación).
16		Examen Final
17		Examen Sustitutorio

IX. **METODOLOGÍA**

Análisis y Diseño de Circuitos y Sistemas Digitales. Dialogo y exposición en la

presentación teórica y práctica usando materiales y equipos disponibles.

Tutoría para el reforzamiento el resolver programas y solucionar problemas.

Laboratorio guiado con explicación previa y desarrollo de aplicaciones reales.

Experiencias de diseño en laboratorio. Método interactivo.

EQUIPOS Y MATERIALES.

Laboratorio de Circuitos y Dispositivos y Sistemas Digitales.

Laboratorio de cómputo. Retroproyector.

Computador con software de presentación y video-proyector.

Pizarra y tiza/plumón, en caso necesario.

Guías de Laboratorio.

Soporte de red local y servicio Web.

X. EVALUACIÓN

CRITERIOS

Asistencia.

Participación en clase.

Evaluaciones.

PROCEDIMIENTOS E INSTRUMENTOS

Examen Parcial : EP

Examen Final : EF
Laboratorios : Li
Proyectos de Laboratorio : PLi
Nota de Participación : NP
Promedio final del curso : PFC

*Nota: El Examen Sustitutorio, sustituye a la menor nota obtenida en los exámenes parcial y final.

XI. REFERENCIAS BIBLIOGRÁFICAS

- Ronald Tocci, y Wilder Neals Sistemas digitales. Principios y aplicaciones. Pearson Educación. Mexico. 8va Edición. 2003. 991 paginas.
- Morris Mano. Lógica y diseño de computadores. Prentice Hall 1994.
- Boylestad Nashelsky, Circuitos electrónicos. Teoría de Circuitos. Prentice Hall
 1996.
- Hermosa Antonio, Electrónica digital práctica. Tecnología y Sistemas Alfa-Omega/Marcombo - 1996.
- Paul Zbar, Prácticas de electrónica. Marcombo 1992.

BIBLIOGRAFÍA COMPLEMENTARIA:

Tm	TITULO	AUTOR	
1	Arquitectura de Computadoras	Hennessy	Ultima Edición

2	Conecciones en el IBM PC/XT/AT	Seyer, D.	Ultima Edición
3	Organización de Computadoras	Tenebaum Andrens	Ultima Edición
4	PETER NORTON Soluciones y Problemas	Peter Norton	Ultima Edición
	para PC		
5	80286 Arquitectura y Sistemas	Straus, Edmund	Ultima Edición
6	A Fondo Mantenimiento y Sistemas	Cannon, Donl	
	Digitales		
7	A Fondo Microprocesadores	Cannon, Donl	Ultima Edición
8	Arquitectura de Computadoras	Morris Mano, M	Ultima Edición
9	Programación del Z80	Zaks, Rodnay	Ultima Edición
10	Reparación y mantenimiento de	Tooley, Michael	Ultima Edición
	Computadoras		
11	Robótica	Fuks	Ultima Edición
12	Robótica una Introducción	Mccloy, D	Ultima Edición
13	Servomecanismos	Bulliet	Ultima Edición
14	Sistema Automático de Control	Kuo, Benjamin C.	Ultima Edición
15	Sistemas Digitales	Peterson, Hill	Ultima Edición
16	Sistemas Modernos de Control	Dorf, C. Richard.	Ultima Edición
17	Técnicas y Proyecto de Interfases	Penfold, R.A.	Ultima Edición
18	Upgraming and Reparin PCS	Mueller, Scott	Ultima Edición
19	Preparación y Evaluación de Proyectos	Nassir Sapag Chain	Ultima Edición
20	Fundamentos de Microprocesadores	Tokheim, Roger L.	Ultima Edición
21	Fundamentos de Programación de	Murphy Smoot	Ultima Edición
	Computadoras		
22	Guía de Programación de 80360	Lance Leventhal	Ultima Edición
23	Introducción a la Tecnología Digital	Porat y Barna	Ultima Edición
24	Lógica Digital y Diseño de Computadoras	Morris Mano, M	Ultima Edición
25	Los Microprocesadores de INTEL	Barry B. Brey	Ultima Edición
26	Los Microprocesadores y la Radioafición	Helms, Harry L.	Ultima Edición
27	Microcomputadoras	Long Larry	Ultima Edición
28	Microprocesadores	Angulo, J. M.	Ultima Edición
29	Microprocesadores Conceptos y	Buck Enginering	Ultima Edición
	Aplicaciones		
30	Microprocesadores de 32 bites	Angulo, J. M.	Ultima Edición
31	Microprocesadores Diseño Práctico	Angulo, J. M.	Ultima Edición
32	Microprocesadores Troubleshooting	Buck Eninering	Ultima Edición
30	Periféricos y Accesorios	Peter Norton	Ultima Edición
31	Microcontroladores de 8 bites	Martinez Barron	Ultima Edición