UNIVERSIDAD RICARDO PALMA

Facultad de Ingeniería

Escuela Académico Profesional de Ingeniería Informática SÍLABO

PLAN DE ESTUDIOS 2006-II

1. DATOS GENERALES:

ASIGNATURA: : FÍSICA Y CIRCUITOS

IF-0305 Código Área académica Física Condición Obligatorio Nivel III Ciclo Créditos 4 Número de horas de Teoría: 2 Número de horas de Prácticas 2 Numero de horas de Laboratorios 3

Requisito : IF- 0205 (Física I)

2. SUMILLA.

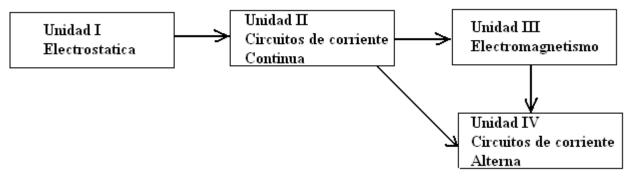
El curso de Física III, corresponde al Tercer Ciclo de la formación de la Escuela Académica Profesional de Ingeniería Informática El Curso es de naturaleza Teórico - Práctico y proporciona a los participantes los principios fundamentales de la Electrostática, Electricidad y Magnetismo. Tiene como objetivo general que al finalizar el curso el alumno será capaz de: Continuar desarrollando su capacidad de análisis, habilidades manuales e intelectuales, mediante el estudio de las leyes de la naturaleza. Conocer los fenómenos de: Electricidad, magnetismo, corriente continua y corriente alterna

3. ASPECTOS DEL PERFIL PROFESIONAL QUE APOYA LA ASIGNATURA

El ingeniero informático egresado de la Universidad Ricardo Palma es un profesional dotado de competencias que se sustentan en las Ciencias Básicas y Aplicadas, así como, en las disciplinas propias de su formación

4. OBJETIVOS Y COMPETENCIAS

COMPETENCIAS DE LA CARRERA:


- Integra soluciones tecnológicas de Información y Procesos del negocio para atender las necesidades del negocio y otras empresas permitiendo alcanzar sus objetivos en una forma efectiva y eficiente.
- Desarrolla y mantiene sistemas de software confiables, eficientes y que sea económico desarrollarlos y mantenerlos y que satisfagan los requisitos definidos por los clientes.

COMPETENCIAS DEL CURSO.

- Aplica los principios fundamentales de la Electrostática, la Electricidad y Magnetismo.
- Identifica los parámetros concernientes a la electrostática, electricidad y magnetismo.
- Comprende la manifestación estática y dinámica de las cargas eléctricas.
- Comprende los efectos magnéticos sobre las cargas eléctricas y los hilos conductores.
- Establece y resuelve las ecuaciones, básicamente algebraicas, de corrientes eléctricas dependientes del tiempo.

5. PROGRAMACION DE LOS CONTENIDOS Y ACTIVIDADES

5.1 RED DE APRENDIZAJE

5.2. UNIDADES DE APRENDIZAJE

UNIDAD Tematica Nº 1: ELECTROSTÁTICA

Logros de la unidad. Conoce los cuerpos con carga eléctrica. Calcula fuerzas eléctricas. Mide diferencias de potencial. Identifica un condensador y sus características y aplica en circuitos eléctricos

SEMANA	CONTENIDO	ACTIVIDAD	
1	Carga y Ley de Coulomb Introducción Carga eléctrica y materia. Fenómenos de electrización. Conductores y aisladores Ley de Coulomb. Principio de superposición.	 Exposición del profesor Experimentos demostrativos. Práctica introductoria de laboratorio: El Multímetro. Exposición virtual Uso del electroscopio 	
2	Campo Eléctrico. Definición. Líneas de campo eléctrico Campo eléctrico de cargas puntuales y de cargas continuas Ley de Gauss. Campo eléctrico de línea infinita y plano uniformemente cargado. Movimiento de cargas puntuales en un campo eléctrico constante. Aplicaciones: Tubos de rayos catódicos	 Exposición del profesor Experimento virtual. Resolución de problemas Primera práctica de laboratorio. 	
3	Potencial Eléctrico Energía potencial eléctrica. Diferencia de potencial. Potencial eléctrico Calculo de potencial: cargas puntuales y cargas continuas. Relación entre campo y potencial. Curvas Equipotenciales. Propiedades electrostáticas de los conductores. Dipolo eléctrico	 Exposición del profesor Exposición virtual Segunda práctica de laboratorio. Resolución de problemas Primera Práctica Calificada 	
4	Condensadores y dieléctricos Capacitancia. Condensadores de placas paralelas. Condensadores en serie y en paralelo. Energía almacenada. Condensador con dieléctrico.	 Exposición del profesor Exposición virtual Tercera práctica de laboratorio. Diseñar y construir un circuito sencillo que muestre que el condensador almacena energía eléctrica. 	

BIBLIOGRAFÍA:

- TIPLER PAUL A. Física para la Ciencia y la Tecnología. Vol. 2, Quinta edición. Edit. REVERTE, 2004. México;
 Capítulos 21, 22, y 23
- SEARS, FRANCIS W., ZEMANZKY, MARK W., YOUNG, HUGH D. y ROGER A. Física universitaria. Vol. 2. Décimo primera edición. Edit. PERSON EDUCACIÓN. México, 2005; Capítulos, 21, 22 y 23
- SERWAY, RAYMOND A.-Física para Ciencias e Ingeniería. Vol. 2. Quinta edición . Edit. THOMSON PARANINFO. S.A. México
- 2006.Capítulos:. 23, 24 y 25

Enlace en Internet : http://www.sc.ehu.es/sbweb/fisica/elecmagnet/campo_electrico/fuerza/fuerza.htm

http://perso.wanadoo.es/vicmarmor/efb_campoelec.htm

http://www.inf-cr.uclm.es/www/dptofisica/Tema5.doc

UNIDAD TEMATICA Nº 2: CIRCUITOS DE CORRIENTE CONTINUA

Logros: Define la corriente eléctrica y las leyes que lo rigen. Plantea y resuelve las ecuaciones de un circuito de corriente continua. Sabe utilizar los condensadores como parte de un circuito

5	Corriente eléctrica Introducción Intensidad de corriente eléctrica Densidad de corriente, Ley de Ohm Conductividad, resistividad y resistencia. Potencia, Efecto Joule Resistencias en serie y paralelo.	 Exposición del profesor Experimento demostrativo. Cuarta práctica de laboratorio. Trabajo domiciliario: Buscar en Internet una descripción sencilla de los materiales superconductores
6	Circuitos de corriente continua CC. Fuerza electromotriz. Amperímetros, voltímetro, ohmiómetros Leyes de Kirchhoff.	 Exposición del profesor Exposición virtual Resolución de problemas Quinta práctica de laboratorio. Segunda practica calificada
7	Circuitos RC. Carga y descarga de un condensador. Gráfico de Carga, Corriente y Voltaje en función del tiempo.	 Exposición del profesor Exposición virtual Resolución de problemas Primer control de laboratorio
8	Evaluación Unidades Temáticas 1 y 2	EXAMEN PARCIAL

BIBLIOGRAFÍA:

- TIPLER PAUL A. Física para la Ciencia y la Tecnología. Vol. 2, Quinta edición. Edit. REVERTE, 2004. México ;
 Capítulos 24 y 25
- SEARS, FRANCIS W., ZEMANZKY, MARK W., YOUNG, HUGH D. y ROGER A. Física universitaria. Vol. 2. Décimo primera edición. Edit. PERSON EDUCACIÓN. México, 2005; Capítulos, 24,25 y 26
- SERWAY, RAYMOND A.-Física para Ciencias e Ingeniería. Vol. 2. Quinta edición . Edit. THOMSON PARANINFO. S.A. México
- 2006.Capítulos:. 26,27 y 28

Enlace en Internet

http://www.asifunciona.com/electrotecnia/ke_corriente_electrica/ke_corriente_electrica_5.htm http://www.monografias.com/trabajos34/circuitos-electricos/circuitos-electricos.shtml http://hyperphysics.phy-astr.gsu.edu/HBASE/hframe.html

UNIDAD TEMATICA Nº 3: ELECTROMAGNETISMO

Logros: Observa los campos y fuerzas magnéticas. Produce campos magnéticos por medio de corrientes. Conoce el funcionamiento de un motor eléctrico. Produce corrientes a partir de campos magnéticos variables

SEMANA	CONTENIDO	ACTIVIDAD	
9	Campo magnético Introducción Inducción magnética, definición Líneas de campo. Fuerza sobre una carga en movimiento. Fuerza sobre hilos conductores. Momento magnético. Aplicación: Motor DC	 Exposición del profesor. Experimento demostrativo. Exposición virtual Resolución de problemas Sexta práctica de laboratorio. Trabajo domiciliario: Diseñar y construir un motor de corriente continua. 	
10	Corrientes como fuentes de campo magnético. Leyes de Biot-Savart y Ley de Ampere. Campo producido por cables rectos y espiras circulares.	 Exposición del profesor Experimento demostrativo Exposición virtual 	

	Campo dentro de una bobina	Séptima práctica de laboratorio. Resolución de problemas	
11	Magnetismo. Estudio experimental de la inducción magnética. Fuerza magnética sobre cargas en movimiento. Fuerza magnética sobre un conductor con corriente.	 Exposición del profesor Experimento demostrativo Resolución de problemas Octava práctica de laboratorio. Tercera práctica calificada. 	
12	Inducción electromagnética Flujo magnético. Fuerza electromotriz y corriente inducidas. Ley de Faraday y de Lenz. Transformador.	 Exposición del profesor Experimento demostrativo. Resolución de problemas Trabajo domiciliario: Diseñar y construir un dispositivo que muestre el fenómeno de inducción. Novena práctica de laboratorio. 	

BIBLIOGRAFÍA:

- TIPLER PAUL A. Física para la Ciencia y la Tecnología. Vol. 2, Quinta edición. Edit. REVERTE, 2004. México ; Capítulos: 26, 27 y 28
- SEARS, FRANCIS W., ZEMANZKY, MARK W., YOUNG, HUGH D. y ROGER A. Física universitaria. Vol. 2. Décimo primera edición. Edit. PERSON EDUCACIÓN. México, 2005; Capítulos, 27. 28, 29 y 30
- SERWAY, RAYMOND A.-Física para Ciencias e Ingeniería. Vol. 2. Quinta edición . Edit. THOMSON PARANINFO. S.A. México
- 2006.Capítulos:. 29, 30, 31, y 321

Enlace en Internet: http://www.sociedadelainformacion.com/departfgtobarra/magnetismo/index.htm

http://www.sc.ehu.es/sbweb/fisica/elecmagnet/campo_magnetico/varilla/varilla.htm

http://exa.unne.edu.ar/depar/areas/fisica/electymagne/TEORIA/elecmagnet/induccion/espira/espira.htm

http://www.sc.ehu.es/sbweb/fisica/elecmagnet/induccion/variable/variable.htm

UNIDAD 04: CIRCUITOS DE CORRIENTE ALTERNA

Logros: Conoce la generación de corrientes Alternas. Analiza los circuitos de corriente alterna

SEMANA	CONTENIDO	ACTIVIDAD
13	Corriente alterna (AC) Introducción Parámetros de una corriente senoidal: amplitud, frecuencia, periodo, ángulo de fase. valores eficaces. Desfasaje.	 Exposición del profesor Exposición virtual Resolución de problemas Décima práctica de laboratorio
14	Circuito en serie R LC. Representación ondulatoria. Representación con fasores Impedancias, reactancias e inductancias. Desfasaje de señales. Resonancia.	 Exposición del profesor Semana de recuperación de laboratorio. Resolución de problemas Cuarta práctica calificada
15	Circuito AC Análisis de circuitos de corriente alterna. Calculo fasorial de impedancias, voltajes y corrientes. Factor de potencia	Exposición del profesor
16	Evaluación Unidades Temáticas 3 y 4	Examen Final
17	Evaluación Todas las Unidades Temáticas	Examen Sustitutorio

BIBLIOGRAFÍA:

- TIPLER PAUL A. Física para la Ciencia y la Tecnología. Vol. 2, Quinta edición. Edit. REVERTE, 2004. México ;
- SEARS, FRANCIS W., ZEMANZKY, MARK W., YOUNG, HUGH D. y ROGER A. Física universitaria. Vol. 2. Décimo primera edición. Edit. PERSON EDUCACIÓN. México, 2005; Capítulos 31

- SERWAY, RAYMOND A.-Física para Ciencias e Ingeniería. Vol. 2. Quinta edición . Edit. THOMSON PARANINFO. S.A. México
- 2006.Capítulos:. 33

Enlace en Internet: http://www.sc.ehu.es/sbweb/fisica/elecmagnet/induccion/alterna/alterna.htm
http://www.salesianos-sevilla.com/malaga/image/PROBLEMAS%20DE%20CIRCUITOS%20DE%20CORRIENTE%20ALTERNA.doc

6. TECNICAS DIDACTICAS

- Exposición de los temas en cada clase, con participación activa de los estudiantes.
- Solución de problemas propuestos por el profesor a los alumnos para su desarrollo en cada clase.
- demostración en el aula de experimentos, videos y multimedia de fenómenos físicos que refuerzan los conceptos teóricos de la clase.
- Realización por el estudiante de prácticas de laboratorio en relación con los fenómenos físicos del curso.

7. EQUIPOS Y MATERIALES

- Uso de la multimedia, del Internet y el aula virtual
- Uso de notas y apuntes de clase del profesor colocados en el aula virtual
- Uso de la pizarra tiza y plumones

8. EVALUACION.

Instrumento	Sigla	Peso
Promedio practicas calificadas	PC	01
Promedio Laboratorio.	PL	01
Examen Parcial.	EP	01
Examen Final.	EF	01
Examen Sustitutorio.	ES	01
Nota Final	NF	

- De 04 prácticas calificadas, se anula una práctica que tenga la menor nota.
- De 10 prácticas de laboratorio, se anulan dos de las notas mas bajas.
- Dentro de las prácticas de laboratorio existen dos controles de laboratorio (CL) y cada uno de ellos tiene peso dos
- Los alumnos que registren seis inasistencias o más se les considerará desaprobados.
- La nota del examen sustitutorio (ES) reemplaza a la del EP o EF de menor nota.

Promedios de prácticas calificadas (PC) y de laboratorios (PL):

$$PC = \frac{P1 + P2 + P3}{3}$$

$$PL = \frac{L1 + L2 + L3 + L4 + 2CL1 + L5 + L6 + L7 + L8 + 2(CL1 + CL2)}{12}$$

La nota final resulta de aplicar la formula

$$NF = \frac{EP + EF + PC + PL}{\Delta}$$

- Los promedios de prácticas calificadas y los promedios de laboratorios se consideran hasta con un decimal.

Guía de Laboratorio:

- Experimentos de Electricidad y Magnetismo. Laboratorio de Física de la Facultad de Ingeniería - URP.