

Universidad Ricardo Palma

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA INFORMATICA DEPARTAMENTO ACADÉMICO DE INGENIERÍA

PLAN DE ESTUDIOS 2015 II

SÍLABO

1. DATOS ADMINISTRATIVOS

1.1. Nombre del curso Análisis de Sistemas y Diseño de Software

1.2. Código IF 0604

1.3. Tipo del curso 1.4. Área Académica Teórico - Práctico Informática 1.5. Categoría Obligatorio 1.6. Ciclo

VI 1.7. Créditos1.8. Horas semanales1.9. Requisito 04.5

Teoría = 3. Laboratorio = 3

IF0504 Ingeniería de Requerimientos

1.10. Semestre Académico 2018-II

1.11. Docente Mg. Carlos Antonio García

2. SUMILLA.

Propósitos generales:

El curso de Análisis de Sistemas y de Diseño de Software corresponde al sexto semestre del Plan de Estudios de la Escuela Académico Profesional de Ingeniería Informática. Es de naturaleza teórico-práctico.

Busca que el alumno consiga desarrollar capacidades en las técnicas modernas de Análisis de Sistemas y de Diseño de Software que le permitan construir un producto de software satisfactorio y eficiente. Esta asignatura propicia el trabajo grupal y de investigación mediante la elaboración de un proyecto que debe ser sustentado por los alumnos a lo largo de todo el ciclo académico. Tiene como propósito desarrollar en el estudiante las capacidades necesarias para realizar y especificar el Diseño del Software, que luego permita su implementación.

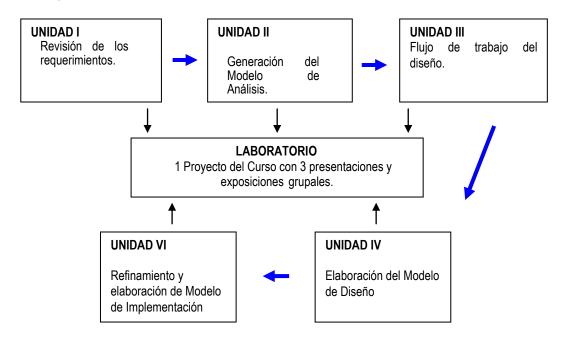
Síntesis del contenido:

Los contenidos del curso de Análisis de Sistemas y Diseño de Software se dividen en cinco unidades temáticas:

- (1) Revisión de los requerimientos.
- (2) Generación del Modelo de Análisis.
- (3) Flujo de trabajo del Diseño.
- (4) Elaboración del Modelo de Diseño.
- (5) Refinamiento y elaboración de Modelo de Implementación

3. COMPETENCIAS DE LA CARRERA

- 3.1 Integra soluciones tecnológicas de información y de procesos del negocio, para encontrar las necesidades del negocio, permitiendo alcanzar sus objetivos en forma efectiva.
- 3.2 Encuentra la tecnología necesaria para aplicarla a los negocios, el gobierno, las instituciones de salud, educacionales y otras organizaciones sociales.
- 3.3 Desarrolla y mantiene sistemas informáticos confiables, eficientes y económicos, que satisfagan los requisitos definidos por los clientes.


4. COMPETENCIAS DEL CURSO

- 4.1 Integra soluciones informáticas para la solución de casos reales.
- 4.2 Implementa metodologías orientados a objetos para el desarrollo de software.
- 4.3 Interpreta y aplica los principios de gestión de proyectos de sistemas iterativo, evolutivo y ágil.

FACULTAD DE INGENIERÍA PLAN DE ESTUDIOS 2015-II

- 4.4 Integra las fases de concepción y elaboración y define la arquitectura preliminar.
- 4.5 Establece un Modelo de Dominio refinado para diseñar adecuadamente la solución planteada.
- 4.6 Utiliza técnicas de diseño que propician facilidad del mantenimiento y reutilización de la aplicación resultante.
- 4.7 Organiza los paquetes del modelo de implementación, diagrama de despliegue del diseño de la aplicación.
- 4.8 Desarrolla un provecto haciendo uso del enfoque evolutivo.
- 4.9 Selecciona una arquitectura, identifica los sub-sistemas.
- 4.10 Integra soluciones informáticas para la solución de casos reales.
- 4.11 Desarrolla proyectos informáticos con herramientas de última generación.
- 4.12 Propicia el trabajo grupal e individual.

5. RED DE APRENDIZAJE:

6. PROGRAMACIÓN SEMANAL DE LOS CONTENIDOS

UNIDAD TEMÁTICA Nº 1: Revisión de los requerimientos. De los Requerimientos al Análisis - el ciclo de vida del software.

Logro de la Unidad: Comprender los conceptos fundamentales del Proceso Unificado y definir la etapa de Elaboración.

Nº de horas: 6

SEMANA	CONTENIDOS	ACTIVIDADES DE APRENDIZAJE
	Refinar el Modelo de Casos de Uso del Sistema:	Explicación teórico - práctica del Modelo de Casos
	Diagrama de Paquetes del Sistema. Diagramas de	de Uso del Sistema. Actividades vs. CUSI.
1	CUSI. Actores del Sistema.	
'	Refinar las Especificaciones Textuales de Casos de	Desarrollo de casos prácticos en el laboratorio.
	Uso del Sistema: Características o Facilidades del	relación de los CUS vs. Características del SI.
	Sistema de Información.	Trazabilidad.

UNIDAD TEMÁTICA N° 2: Generación del Modelo de Análisis. La Realización de los Casos de Uso del Sistema. Logro de la Unidad: Construir el Modelo Conceptual. Identificar los elementos de los diagramas de Interacción. Crear Diagramas Clases de Análisis y de Interacción.

Nº de horas: 30

ESCUELA DE INFORMÁTICA PÁGINA: 2

SEMANA	CONTENIDOS	ACTIVIDADES DE APRENDIZAJE	
	El Modelo Conceptual de Entidades del Sistema,	Explicación teórico - práctica del Modelo	
2	Atributos y Relaciones: Tipos de asociaciones,	Conceptual mediante la resolución de casos	
	multiplicidad.	prácticos en teoría y laboratorio.	
	Modelo de Análisis, Realización de los Casos de Uso.	Ejercicios para identificar las clases	
3	Identificar las Clases de análisis (Estereotipos: interfaz,	estereotipadas.	
	control, entidad).	1ra. Práctica Calificada.	
4	Desarrollo de Diagramas de Interacción: Secuencia y	Exposición del Primer Entregable del Proyecto	
4	Colaboración.	de Laboratorio.	
	Desarrollo de Prototipos de Interfaz de Usuario. Extensión del Modelo Conceptual. Desarrollo de un Modelo de Datos.	Desarrollo práctico de aplicaciones,	
5		Transformación del Modelo Conceptual al Modelo	
		de Datos.	
	Desarrollo de un Modelo de Datos.	Aplicación a los desarrollos planificados.	

UNIDAD TEMÁTICA N° 3: Flujo de trabajo del diseño. Comportamiento de los flujos de las actividades que se realizan en el Trabajo de Diseño.

Logro de la Unidad: Reconoce los conceptos (objetos) significativos en el dominio del problema N^o de horas: 6

SEMANA	CONTENIDOS	ACTIVIDADES DE APRENDIZAJE
	Revisión de los flujos del Diseño. Diseño de la Arquitectura, diseño de un Caso de Uso, diseño de una	Explicación teórico - práctica de los Flujos de Trabajo en el Diseño.
6	clase, diseño de un Subsistema.	masajo en el Sicono.

UNIDAD TEMÁTICA Nº 4: El Modelo de Diseño. Realización de los CUS con Clases de Diseño.

Logro de la Unidad: El alumno incorporará a su modelo de realización del sistema, métodos para manejar en detalle los datos y procedimientos. Transición de Estados.

Nº de horas: 30

SEMANA	CONTENIDOS	ACTIVIDADES DE APRENDIZAJE
7	Diagramas de Transición de Estados. Los Estados en el Modelo Conceptual y su relación con el Diagrama de Transición de Estados.	Desarrollo de ejemplos en el Laboratorio. Ejercicios del Diagrama de Estados. Aplicación a los desarrollos programados. 2da. Práctica Calificada.

8	EXAMEN PARCIAL	
9	Introducción Construcción del Modelo del Dominio	Desarrollo del Proyecto utilizando Lenguajes de Programación y Bases de Datos.

9	Construcción del Modelo del Dominio	Programación y Bases de Datos.	
	Refinar el modelo agregando diferentes tipos de Asociaciones	Desarrollo de casos en Laboratorio.	
Desarrollo de Diagramas de Interacción		Exposición y presentación de la Teoría.	
10	(Colaboración, Secuencia) con clases de Diseño –	Desarrollo de casos en Laboratorio.	
	Identificación de los métodos y su ubicación en el Modelo de Dominio	Participación de alumnos con observaciones y consultas.	
	Asignación de responsabilidades, Patrones GRASP:	Exposición y presentación de la teoría.	
11	Experto, Creador, Bajo Acoplamiento, Alta Cohesión,	Desarrollo de casos prácticos de Patrones	
	Controlador.	GRASP usando Rational Rose, BD y lenguaje de	
		programación.	
	Polimorfismo, Fabricación Pura, In-dirección, No	Exposición del Segundo Entregable del	
12	hable con extraños	Proyecto de Laboratorio.	
		Patrones Creacionales: Abstract Factory	
		(Fábrica abstracta),	
		Patrones Estructurales: Fachada (Facade),	
13	Introducción a los Patrones Gang of Four	Patrones de Comportamiento: Observer	
		(Observador).	
		3ra. Práctica Calificada.	

ESCUELA DE INFORMÁTICA PÁGINA: 3

UNIDAD TEMÁTICA N° 5: Refinamiento y elaboración de Modelo de Implementación y el Modelo de Despliegue.

Logro de la Unidad: El alumno Incorporará a su modelo del sistema los subsistemas y paquetes de componentes y distribución predefinidos.

Nº de horas: 12

SEMANA	CONTENIDOS	ACTIVIDADES DE APRENDIZAJE
	Representación de los componentes: Diagrama de	Desarrollo de casos prácticos de
14	implementación	implementación y distribución usando Rational
		Rose.
	Representación del ambiente físico: Diagrama de	Presentación del Entregable Final del
15	despliegue	Proyecto de Laboratorio con Exposición.

16	EXAMEN FINAL	

7. TÉCNICAS DIDÁCTICAS

- 7.1. Análisis de casos.
- 7.2. Debate.
- **7.3.** Dálogo y exposición en las clases de teoría y laboratorio, con el apoyo de materiales y equipos disponibles: Una computadora para el docente y una computadora por alumno.
- **7.4.** Desarrollo guiado por el docente en la elaboración de proyectos grupales.
- **7.5.** Las clases teóricas y de Laboratorio se publican en el Aula Virtual.
- **7.6.** Retroalimentación: absolución de preguntas y reforzamientos continuos.

8. EQUIPOS, INSTRUMENTOS Y MATERIALES

8.1 Equipos e Instrumentos:

- PC y multimedia.
 - multimedia
 - Laboratorio de Informática

8.2 Materiales: Uso de Rational Rose en las clases de Laboratorio

Pizarra y tizas y/o plumones.

9. EVALUACIÓN

9.1. Criterios:

- La asistencia a clases es del 70% como mínimo.
- Conocimiento de los tópicos tomados en las prácticas teóricas y de laboratorio.
- Sustentación del Proyecto en tres etapas.

Concepto	Detalle	Porcentaje
	Examen Parcial	20 %
Teoría	Examen Final	30 %
	Prácticas Calificadas (3 Prácticas)	20 %
	Trabajo del curso (3 sustentaciones, la	
Laboratorio	última con peso dos)	30 %

9.2. Fórmula:

PROMEDIO:

0.2*PAR1 + 0.3*FIN1 + 0.2*(PRT1 + PRT2 + PRT3)/3 + 0.3*(PYL1 + PYL2 + 2*PYL3)/4

10. REFERENCIAS BIBLIOGRÁFICAS Y OTRAS FUENTES

"Uml El proceso unificado de desarrollo de software" Ivar Jacobson Editorial Addison Wesley. 1 jul 2000

ESCUELA DE INFORMÁTICA PÁGINA: 4

FACULTAD DE INGENIERÍA PLAN DE ESTUDIOS 2015-II

"The Unified Modeling Language - User Guide". Grady Booch, Ivar Jacobson, James Rumbaugh. Addison-Wesley Educational Publishers Inc; Edición: 2nd edition. 19 de julio de 2004

- "Object-Oriented Modeling and Design with UML" (2nd Edition) James Rumbaugh Prentice Hall, Inc. Dec 9, 2004
- "Aplicando Uml y Patrones: una introducción al análisis y diseño orientado a objetos y al proceso unificado" Larman, Craig. Editorial: Prentice Hall (2003).
- "Patrones de Diseño". Gamma, E; Helm, R; Jhonson, R y Vissides, J. Editorial Addison Wesley 2003
- "Agile and iterative development: a managers guide" Larman, Craig. (2004).

Referencias en la Web

- https://www-01.ibm.com/software/rational/uml/resources/
- http://www.uml.org/
- https://www.omg.org/

Pereyra, German. (2003). "El uso del prototipo en el Ciclo de Desarrollo del Sistema".

o http://www.monografias.com/trabajos12/proto/proto.shtml

ESCUELA DE INFORMÁTICA PÁGINA: 5